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Abstract
Communities in networks are groups of nodes that are more densely

connected to each other than to the rest of the network, forming

clusters with strong internal relationships. When nodes have sen-

sitive attributes, such as demographic groups in social networks,

a key question is whether nodes in each group are equally well-

connected within each community. We model connectivity fairness

using group modularity, an adaptation of modularity that accounts

for group structures. We introduce two versions of group modular-

ity, each grounded on a different null model, and propose fairness-

aware community detection algorithms. Finally, we provide experi-

mental results on real and synthetic networks, evaluating both the

connectivity fairness of community structures in networks and the

performance of our fairness-aware algorithms.

CCS Concepts
• Information systems→ Data mining.
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1 Introduction
Networks are essential for representing and analyzing intercon-

nected systems across different domains, such as in social, col-

laboration, and citation settings. Nodes in networks often form

communities, i.e., subsets of nodes that are more tightly connected

with each other than with nodes outside the community [15, 25].

Connections in networks play a pivotal role in shaping opinions

and influencing decision-making processes [14, 39]. In this paper,

we study the fairness of connections within network communities.

Algorithmic fairness has been the center of much current re-

search [12, 29, 31, 32]. In a broad sense, fairness is addressed either

at the level of individuals, or at the level of groups of individuals

[13, 36]. In most networks, nodes have attributes, forming groups,

where nodes have the same values in one or more of their attributes.

For example, in a social network, groups of nodes often correspond
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to demographic groups formed based on gender, age, or race. We

consider fairness at the level of such groups.

Most previous research in group fairness of communities asks

that the representation of groups within each community is bal-

anced [8, 10, 24]. In this paper, we shift the focus from nodes to

connections.We ask the key question, whether each group is equally

well-connected within each community. For example, consider a

collaboration network. Do women in the network participate in an

equitable number of connections within the formed communities?

The strength of connections within each community is vital for

minorities to be heard, and influence others.

To model fairness of connections, we usemodularity. Modularity

is a measure of the quality of community structures in networks

that quantifies the strength of the division of a network into com-

munities by comparing the density of edges within communities to

the expected density in a random graph [11, 30]. We introduce a

variation of modularity, termed group modularity, that considers the
density of edges of nodes belonging to a specific group. We consider

two different random graph models. One agnostic to the group each

node belongs to, and one that takes into account group membership.

In addition, we propose a diversity-based variation of modularity

that looks only at connections between nodes belonging to different

groups and we address its relationship to group fairness. Diversity

of connections is important in addressing filter bubbles, and echo

chambers, i.e., cases where individuals in a network are exposed

only to opinions similar to their own often leading to reinforcing

confirmation bias and polarization [14, 21, 28].

To locate fair community structures in networks, we propose

a fairness-aware community detection algorithm. The algorithm

builds on the Louvain algorithm [7, 33], an agglomerative hierar-

chical method, where sets of nodes are successively merged to form

larger communities such that modularity increases. In the proposed

fairness-aware algorithms, the criterion for merging communities

takes into account the fairness and diversity of the communities.

To evaluate our approach, we present experimental results using

both synthetic and real networks. The goal of our experimental

evaluation is multifold. First, we ask whether community structures

in networks are fair and diverse and what are the factors that affect

fairness and diversity. Then, we evaluate the trade-off between the

quality and the fairness and diversity of communities found by our

community detection algorithms and compare the efficacy of the

proposed approaches.

The remainder of the this paper is structured as follows. In Sec-

tion 2, we introduce our model for fairness in communities, and in

Section 3, we present the fairness-aware Louvain algorithm. Exper-

imental results are reported in Section 4, related work in Section 5,

while Section 6 concludes the paper.
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2 Group-based Modularity Fairness
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, where 𝑉 is the set of nodes

and 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges. We assume that nodes in𝑉 belong

to groups based on the value of one of their sensitive attributes. For
simplicity, we assume two values, red and blue, with red being the

sensitive one. The red group, denoted by 𝑅, 𝑅 ⊆ 𝑉 , is the subset of
nodes with red value. The blue group, denoted by 𝐵, 𝐵 ⊆ 𝑉 , 𝐵 ∪ 𝑅
= 𝑉 and 𝐵 ∩ 𝑅 = ∅, contains the remaining nodes. We will use 𝜙 to

denote the fraction of the red nodes in the overall population, that

is, 𝜙 =
|𝑅 |
|𝑉 | .

Let us assume that the nodes of the graph are partitioned into 𝑘

communities: C = {𝐶
1
,𝐶2, . . .𝐶𝑘 }. We will use 𝐶𝐵

𝑖
and 𝐶𝑅

𝑖
respec-

tively for the blue and red nodes in community 𝐶𝑖 .

Most previous research on group fairness focuses on node-based

notions of community fairness [10, 24] that seek to maintain a

balanced representation of the groups in each community, where

the red balance of a community 𝐶𝑖 ∈ C is defined as: 𝐵𝑅 (𝐶𝑖 ) =
|𝐶𝑅

𝑖
|

|𝐶𝑖 | − 𝜙 .
Given that network processes, including opinion formation, in-

formation propagation, and diffusion, primarily occur through in-

teractions along the edges of the network [14, 39], in this paper, we

look into group fairness from the edge perspective. To this end, we

adopt a modularity-based approach.

Modularity measures the divergence between the number of

intra-community edges and the expected such number assuming

a null model [11, 30]. The most commonly used null model is a

random graph where the expected degree of each node within the

graph is equal to the actual degree of the corresponding node in the

real network. Specifically, the modularity of community C𝑖 , 𝑄 (C𝑖 ),
is defined as [30]:

𝑄 (𝐶𝑖 ) =
1

2𝑚

©­«
∑︁
𝑢∈𝐶𝑖

∑︁
𝑣∈𝐶𝑖

𝐴𝑢𝑣 −
𝑘𝑢 𝑘𝑣

2𝑚

ª®¬ (1)

where 𝐴 is the adjacency matrix of 𝐺 ,𝑚 the number of edges in

𝐺 and 𝑘𝑢 , 𝑘𝑣 the degree of node 𝑢, and 𝑣 respectively. Modularity

provides a measure of how well nodes in a community are con-

nected with each other. Negative values indicate less connections

than expected, while positive values indicate more connections.

2.1 Group Modularity
Our goal is to ensure that red nodes are well connected within each

community. Thus, for each red node 𝑢 in 𝐶𝑖 we take the difference

between the actual number of its intra-community edges and the

expected such number. We call this measure red modularity.
As before, the expected number of connections is estimated

assuming as null model a random graph that preserves the degrees

of nodes in 𝐺 . Using this null model, red modularity, 𝑄𝑅 (𝐶𝑖 ) is
defined as:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚

∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝑖

(
𝐴𝑢𝑣 −

𝑘𝑢 𝑘𝑣

2𝑚

)
. (2)

We define similarly the blue modularity 𝑄𝐵 (𝐶𝑖 ). We refer to red

and blue modularity collectively as group modularity.

Note that if we consider the whole graph as a single community

both the red and the blue modularity are zero. In general, positive

values in a community mean that the nodes with the corresponding

color are more connected in the community than expected.

We define (group) modularity unfairness by comparing the red

and blue modularity.

Definition 2.1. For a community 𝐶𝑖 ∈ C, the modularity unfair-

ness of 𝐶𝑖 , 𝑢 (𝐶𝑖 ), is defined as:

𝑢 (𝐶𝑖 ) = 𝑄𝑅 (𝐶𝑖 ) −𝑄𝐵 (𝐶𝑖 ) .

Negative values of 𝑢 (𝐶𝑖 ) indicate unfairness towards the red

group meaning that the red nodes are less well-connected within

the community than the blue ones. Positive values indicate the

opposite, while a zero value indicates lack of unfairness towards

any of the groups.

We also consider diversity within each community by looking

at the edges that connect nodes of different color. Let us call these

edges diverse edges. Note that the expected number of diverse edges

cannot be estimated using the same null model, since we need to

know the color of both endpoints of each edge. Instead, in this case,

we estimate the expected number of diverse edges using as null

model a random bipartite graph, with edges only between nodes

of different color, that preserves the degrees of the nodes in the

original graph 𝐺 .

For a community𝐶𝑖 , the diversity modularity, or simply diversity,
is defined as:

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝐵

𝑖

(
𝐴𝑢𝑣 −

𝑘𝑢 𝑘𝑣

𝑚

)
. (3)

If we consider the whole graph as a single community, then

diversity takes a non positive value. The larger the value of 𝐷𝑅𝐵

the more diverse the network.

Simplifying the forms. Let 𝑋 ∈ {𝑅, 𝐵} and 𝑌 ∈ {𝑅, 𝐵}. We use 𝐼𝑛𝑖

to denote the number of intra-community edges in 𝐶𝑖 , 𝐼𝑛
𝑋
𝑖
, the

number of intra-community edges in 𝐶𝑖 with at least one endpoint

belonging to group 𝑋 , and 𝐼𝑛𝑋𝑌
𝑖

the number of intra-community

edges with one endpoint in group 𝑋 and one endpoint in group 𝑌 .

We also use 𝐾𝑖 for the sum of degrees of all nodes in 𝐶𝑖 , and 𝐾
𝑋
𝑖

for the sum of degrees of all nodes in 𝐶𝑖 that belong to group 𝑋 .

With simple manipulations, we get:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚

(
2𝐼𝑛𝑅𝑅𝑖 + 𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑖𝐾
𝑅
𝑖

2𝑚

)
(4)

𝑢 (𝐶𝑖 ) =
𝐼𝑛𝑅𝑅
𝑖

− 𝐼𝑛𝐵𝐵
𝑖

𝑚
−

(𝐾𝑅
𝑖
)2 − (𝐾𝐵

𝑖
)2

(2𝑚)2
(5)

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

(
𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅
𝑖
𝐾𝐵
𝑖

𝑚

)
(6)

2.2 Labeled Group Modularity
We now consider a null model which is not agnostic of the color

of edge endpoints. For a node 𝑢, let 𝑘𝑅𝑢 be the number of edges of

𝑢 to red nodes and 𝑘𝐵𝑢 be the number of edges of 𝑢 to blue nodes,
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𝑘𝑅𝑢 + 𝑘𝐵𝑢 = 𝑘𝑢 . In the following, 𝑘𝑅𝑢 and 𝑘𝐵𝑢 are respectively called

the red degree and blue degree of node 𝑢.
We consider as null model a random graph where the expected

red degree and the expected blue degree of each node is equal to

the actual red degree and blue degree of the corresponding node

in the real graph 𝐺 . Formally, let 𝑃𝑢𝑣 be the probability of creating

an edge between nodes 𝑢 and 𝑣 . Let𝑚𝑅𝑅 be the number of red-red

edges,𝑚𝑅𝐵 the number of red-blue edges and𝑚𝐵𝐵 the number of

blue-blue edges in the graph. We have that 𝑃𝑢𝑣 = 𝑘
𝑅
𝑢 𝑘

𝑅
𝑣 /2𝑚𝑅𝑅 , for

red nodes 𝑢, 𝑣 ∈ 𝑅, 𝑃𝑢𝑣 = 𝑘𝐵𝑢 𝑘𝐵𝑣 /2𝑚𝐵𝐵 for blue nodes 𝑢, 𝑣 ∈ 𝐵, and
𝑃𝑢𝑣 = 𝑘𝐵𝑢 𝑘

𝑅
𝑣 /𝑚𝑅𝐵 for red-blue nodes 𝑢 ∈ 𝑅 and 𝑣 ∈ 𝐵. For any

node 𝑢, it holds that
∑
𝑣∈𝑅 𝑃𝑢𝑣 = 𝑘

𝑅
𝑢 and

∑
𝑣∈𝐵 𝑃𝑢𝑣 = 𝑘

𝐵
𝑢 .

We define the labeled red modularity 𝑄𝑅
𝐿
(𝐶𝑖 ) by taking again the

difference between the actual number of intra-community edges

involving red nodes, and the expected such number, but now con-

sidering the color (or, in general, label) of both endpoints.

𝑄𝑅𝐿 (𝐶𝑖 ) =
1

2𝑚
(
∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝐵

𝑖

(𝐴𝑢𝑣 −
𝑘𝐵𝑢 𝑘

𝑅
𝑣

𝑚𝑅𝐵
)

+
∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝑅

𝑖

(𝐴𝑢𝑣 −
𝑘𝑅𝑢 𝑘

𝑅
𝑣

2𝑚𝑅𝑅
)) .

(7)

We define similarly the labeled blue modularity 𝑄𝐵
𝐿
(𝐶𝑖 ). We refer

to labeled red and labeled blue modularity collectively as labeled
group modularity. Again, if we consider the whole graph as a single

community both the labeled red and the labeled blue modularity

are zero.

We define the labeled modularity unfairness by comparing the

red and blue labeled modularity.

Definition 2.2. For a community 𝐶𝑖 ∈ C, the labeled modularity

unfairness of 𝐶𝑖 , 𝑢𝐿 (𝐶𝑖 ), is defined as:

𝑢𝐿 (𝐶𝑖 ) = 𝑄𝑅𝐿 (𝐶𝑖 ) −𝑄
𝐵
𝐿 (𝐶𝑖 ) .

Negative values of 𝑢𝐿 (𝐶𝑖 ) indicate unfairness towards the red
group, positive values indicate unfairness towards the blue group,

and a zero value lack of unfairness.

We define labeled diversity modularity, or simply labeled diversity,
as follows:

𝐷𝑅𝐵𝐿 (𝐶𝑖 ) =
1

2𝑚

©­­«
∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝐵

𝑖

(
𝐴𝑢𝑣 −

𝑘𝐵𝑢 𝑘
𝑅
𝑣

𝑚𝑅𝐵

)ª®®¬ . (8)

The labeled diversity of the whole graph is zero, while posi-

tive diversity values in a community indicate that the community

contains more diverse edges than expected.

Simplifying the forms. We use𝐾𝑋𝑌
𝑖

, with𝑋,𝑌 ∈ {𝑅, 𝐵}, to denote
the sum of the degrees of all nodes of color 𝑋 that belong to 𝐶𝑖 to

any node of color 𝑌 . With simple manipulations, we get:

𝑄𝑅𝐿 (𝐶𝑖 ) =
1

2𝑚

(
2 𝐼𝑛𝑅𝑅𝑖 + 𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅𝐵
𝑖
𝐾𝐵𝑅
𝑖

𝑚𝑅𝐵
−

(𝐾𝑅𝑅
𝑖

)2

2𝑚𝑅𝑅

)
(9)

𝑢𝐿 (𝐶𝑖 ) =
𝐼𝑛𝑅𝑅
𝑖

− 𝐼𝑛𝐵𝐵
𝑖

𝑚
−

(𝐾𝑅𝑅
𝑖

)2 − (𝐾𝐵𝐵
𝑖

)2

4𝑚𝑚𝑅𝐵
(10)

𝐷𝑅𝐵𝐿 (𝐶𝑖 ) =
1

2𝑚

(
𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅𝐵
𝑖
𝐾𝐵𝑅
𝑖

𝑚𝑅𝐵

)
(11)

Discussion. Note that both diversity and labeled diversity are

symmetric, that is, it holds that𝐷𝑅𝐵 (𝐶𝑖 ) = 𝐷𝐵𝑅 (𝐶𝑖 ), and𝐷𝑅𝐵𝐿 (𝐶𝑖 ) =
𝐷𝐵𝑅
𝐿

(𝐶𝑖 ). Furthermore, communities whose edges are all diverse

have zero labeled modularity unfairness. However, the opposite

does not necessarily hold: communities can be fair without neces-

sarily being diverse.

3 Fairness-Aware Community Detection
In this section, we present our fairness-aware community detection

algorithm. Our algorithm is based on the well-known Louvain

algorithm that identifies communities in networks by optimizing

modularity [7, 11, 33].

The fairness-aware Louvain algorithm (Algorithm 1) follows

a hierarchical agglomerative approach, starting with each node

forming its own community. The original Louvain algorithm joins

together two communities whose merge produces the largest in-

crease in modularity 𝑄 (Eq. 1). The fairness-aware algorithm uses

two-criteria: two communities are joined if (1) modularity increases

and (2) a group fairness criterion (𝐹𝐶) is met.

For 𝐹𝐶 , we consider different approaches using either the non-

labeled and the labeled group modularity, namely:

(a) the fairness-gain approach where we ask that unfairness in

absolute value decreases (Eq. 5, or 10),

(b) the group-increase approach, where we ask that the group

modularity of the group towards which the network is unfair

increases (Eq. 4, or 9), and

(c) the diversity-increase approach where we ask that diversity

increases (Eq. 6, or 11).

The algorithm operates in two phases that are repeated itera-

tively. In the first phase, the algorithm computes for each node𝑢 the

gain in modularity and the fairness criterion 𝐹𝐶 when removing 𝑢

from its current community and placing it to each of its neighboring

communities. This process is applied repeatedly and sequentially

and stops when a local maxima is reached, i.e., when no individual

move can both increase modularity and satisfy the 𝐹𝐶 criterion.

In the second phase, the algorithm constructs a new graph whose

nodes are now the communities found during the first phase. The

algorithm operates on a weighted graph; each edge 𝑒 is associated

with a weight,𝑤 (𝑒), initially set to 1. Upon merging, the weights

of the edges between the two nodes are set equal to the sum of

the weights of the edges in the corresponding two communities.

Edges between the nodes inside each community are modeled with

a self-loop whose weight is the sum of the weights of these edges.

For the node degrees, it holds 𝑘 (𝑢) = ∑
𝑣,(𝑢,𝑣) ∈𝐸 𝑤 (𝑢, 𝑣) and 𝑘𝑋 (𝑢)

=

∑
(𝑢,𝑣) ∈𝐸,𝑣∈𝑋 𝑤 (𝑢, 𝑣), for 𝑋 ∈ {𝑅, 𝐵}.

Once the graph is constructed, the first and second phase are

repeated on the new graph. The iterations continue until there

are no changes. The computational complexity of Algorithm 1 is

O(𝐿 |𝐸 |), the same with the original Louvain, where O(|𝐸 |) is the
complexity of the two phases, and 𝐿 the number of iterations.

The following lemma (proof in the Appendix) estimates the

change in red modularity Δ𝑄𝑅
𝑢→𝐶𝑖

, blue modularity Δ𝑄𝐵
𝑢→𝐶𝑖

and
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diversity Δ𝐷𝑅𝐵
𝑢→𝐶𝑖

when an isolated red node 𝑢 moves to a commu-

nity 𝐶𝑖 .

Lemma 3.1. When an isolated red node 𝑢 ∈ 𝑅 is moved to commu-
nity 𝐶𝑖 , the difference Δ𝑄𝑅𝑢→𝐶𝑖

in red modularity is:

Δ𝑄𝑅𝑢→𝐶𝑖
=

1

2𝑚

©­«2

∑︁
𝑣∈𝐶𝑖 ,𝑣∈𝑅

𝑤 (𝑢, 𝑣) +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝑢 (𝐾𝑖 + 𝐾𝑅𝑖 )
2𝑚

ª®¬
the difference Δ𝑄𝐵

𝑢→𝐶𝑖
in blue modularity is:

Δ𝑄𝐵𝑢→𝐶𝑖
=

1

2𝑚

©­«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝑢𝐾
𝐵
𝑖

2𝑚

ª®¬
and the difference Δ𝐷𝑅𝐵

𝑢→𝐶𝑖
in diversity is:

Δ𝐷𝑅𝐵𝑢→𝐶𝑖
=

1

2𝑚

©­«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝑢𝐾
𝐵
𝑖

𝑚

ª®¬
Similar formulas hold when moving a blue node 𝑢 to 𝐶𝑖 .

The following lemma (proof in the Appendix) estimates the

change in labeled red Δ𝑄𝑅
𝐿,𝑢→𝐶𝑖

, labeled blue modularity Δ𝑄𝐵
𝐿,𝑢→𝐶𝑖

and labeled diversity Δ𝐷𝑅𝐵
𝐿,𝑢→𝐶𝑖

when an isolated red node𝑢 moves

to a community 𝐶𝑖 .

Lemma 3.2. When an isolated red node 𝑢 ∈ 𝑅 is moved to commu-
nity 𝐶𝑖 , the difference Δ𝑄𝑅𝐿,𝑢→𝐶𝑖

in labeled red modularity is:

Δ𝑄𝑅𝐿,𝑢→𝐶𝑖
=

1

2𝑚
(2

∑︁
𝑣∈𝐶𝑖 ,𝑣∈𝑅

𝑤 (𝑢, 𝑣) +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣)

−
𝑘𝐵𝑢𝐾

𝐵𝑅
𝑖

𝑚𝑅𝐵
+
𝑘𝑅𝑢𝐾

𝑅𝑅
𝑖

𝑚𝑅𝑅
)

the difference Δ𝑄𝐵
𝐿,𝑢→𝐶𝑖

in labeled blue modularity is:

Δ𝑄𝐵𝐿,𝑢→𝐶𝑖
=

1

2𝑚

©­«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝐵𝑢𝐾
𝐵𝑅
𝑖

𝑚𝑅𝐵

ª®¬
and the difference Δ𝐷𝑅𝐵

𝐿,𝑢→𝐶𝑖
in labeled diversity is:

Δ𝐷𝑅𝐵𝐿,𝑢→𝐶𝑖
=

1

2𝑚

©­«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝐵𝑢𝐾
𝐵𝑅
𝑖

𝑚𝑅𝐵

ª®¬ .
Similar formulas hold when moving a blue 𝑢 node to 𝐶𝑖 . In the

Appendix, we also present formulas applicable when merging com-

munities.

4 Experiments
The goal of our experiments is to address the following research

questions (RQ):

RQ1 What are the characteristics of a network that contribute to

unfairness and lack of diversity within communities?

RQ2 Under which network conditions and throughwhatmodifica-

tions of fairness-aware Louvain algorithms can improvement

in both notions of fairness be attained?

RQ3 How effective are the two definitions of unfairness and di-

versity in quantifying their respective measure and consecu-

tively improving fair community detection?

Algorithm 1 Fairness-Aware Louvain

Input: Graph𝐺 (𝑉 , 𝐸,𝐴) where 𝑉 is the set of nodes, 𝐸 is the set

of edges, and 𝐴 are the node colors

Output: List of communities detected.

repeat
Assign every node 𝑣 ∈ 𝑉 to a singleton community

Calculate modularity 𝑄

for each node 𝑣 ∈ 𝑉 do
for each 𝑢 in neighbors of 𝑣 do

Calculate the modularity gain Δ𝑄 and fairness criterion

𝐹𝐶 from the removal of 𝑣 from its current community

and placement in the community of each neighbor.

if modularity increases and 𝐹𝐶 is met then
Move 𝑣 to neighboring community

end if
end for

end for
Create new "super-nodes" from the communities found in

previous step. The new 𝑉 set consists of these "super-nodes".

Recalculate the weight of the edges between these new

"super-nodes".

until there is no improvement

To address these questions we conducted experiments on both

synthetic and real datasets. To account for the randomness in the

order of considering nodes, we selected the best communities from

10 runs. The code is available on GitHub
1
.

Table 1: Synthetic Dataset Characteristics

Parameter Meaning Default

𝑁 Number of nodes 1000

𝜙 Ratio of red nodes 0.5

𝑙 Avg node degree 5

𝑘 Initial number of communities 5

𝑝ℎ , 𝑝
𝑅
ℎ
, 𝑝𝐵

ℎ
Homophily 0.5

𝑝𝑐 Prob. of intra-community edge 0.9

4.1 Datasets
4.1.1 Synthetic Datasets. To study the factors that may lead to un-

fairness, we use amodel based on the stochastic blockmodel [20, 24]

to create networks with nodes of different colors and connectivity

behavior. The model has three important parameters: (1) Parameter

𝜙 controls the size imbalance between the different groups. In a

perfectly node-balanced network, 𝜙 = 0.5; smaller values make the

red group the minority one. (2) Parameter 𝑝𝑐 controls the prob-

ability of intra-community edges. In a random network with no

community structure, 𝑝𝑐 = 0.5; communities appear as 𝑝𝑐 increases.

(3) Parameter 𝑝ℎ controls the probability of same color edges, i.e.,

homophily. Values of 𝑝ℎ larger than 0.5 result in homophily, while

values smaller than 0.5 result in heterophily. When 𝑝ℎ = 0.5, we

have neutrality.

1
https://github.com/gartzis/Fair-Network-Communities-through-Group-

Modularity.git
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We start by an initial assignment of nodes in 𝑘 communities

and then generate edges between the nodes. Note that the actual

number of communities created may differ from 𝑘 , depending on

the values of the other parameters. An edge (𝑢, 𝑣) is generated with
probability 𝑝 (𝑢, 𝑣) defined as follows:

𝑝 (𝑢, 𝑣) =



𝑝𝑐 𝑝ℎ, if 𝑢 and 𝑣 are in the same cluster

and have the same color,

(1 − 𝑝𝑐 ) 𝑝ℎ, if 𝑢 and 𝑣 are in different clusters

and have the same color,

𝑝𝑐 (1 − 𝑝ℎ), if 𝑢 and 𝑣 are in the same cluster

and have different colors,

(1 − 𝑝𝑐 ) (1 − 𝑝ℎ), if 𝑢 and 𝑣 are in different clusters

and have different colors.

We also consider an asymmetric case, with different homophily

probabilities, 𝑝𝑅
ℎ
and 𝑝𝐵

ℎ
, for the red and the blue nodes respectively.

When generating edge 𝑝 (𝑢, 𝑣), we use 𝑝𝑅
ℎ
if 𝑢 ∈ 𝑅, and 𝑝𝐵

ℎ
if 𝑢 ∈ 𝐵.

Table 1 summarizes the parameters. We study the influence of

size imbalance (𝜙) and homophily (𝑝ℎ). In each case, we vary one

of the parameters and use the default values for the other. In each

case, we create 10 random networks and report average values.

4.1.2 Real datasets. We use the following real datasets
2
:

• Pokec. Nodes are users of Pokec, a Sloval social network,
and edges are friendship relationships between them. We

consider the gender attribute (Pokec-g) and the age attribute
(Pokec-a) as sensitive ones. For age, we create two groups

based on whether the user is over 30 years old or not.

• Deezer. Nodes are users of Deezer, a music streaming plat-

form, from European countries and edges are mutual fol-

lower relationships between them. The sensitive attribute is

gender.

• Facebook. The dataset consists of friends list from Face-

book. We consider the gender attribute Facebook-g and

the concentration attribute Facebook-c. The concentration
attribute is the specialized field of study the users chose as

their major.

• Twitch. Nodes are users of Twitch, a live streaming plat-

form for gamers, and edges are mutual follower relationships

between them. The sensitive attribute is gender.

The dataset characteristics are summarized in Table 2. We also

report homophily values that indicate the tendency of nodes to

connect with nodes with the same sensitive attribute. We report

separately the homophily of the red nodes (𝑅ℎ) and the homophily

of the blue nodes (𝐵ℎ). Red homophily (𝑅ℎ) is computed as the

ratio of the number of the actual edges connecting two red nodes

and the expected number of such edges (estimated as 𝜙2
). 𝑅ℎ > 1

indicate homophily, while 𝑅ℎ < 1 heterophily (tendency to connect

with nodes of the opposite color). Similarly, we compute the blue

homophily (𝐵ℎ) as the ratio of the number of the actual edges

between two blue nodes and the expected number of such edges

(estimated as (1 − 𝜙)2
).

2
https://snap.stanford.edu/data/

4.2 Evaluation Results
To evaluate our approach on synthetic data, we create both symmet-

ric and asymmetric datasets. Our goal is to examine how different

group distributions and homophily patterns impact unfairness and

diversity.

We created datasets based on three distinct values of 𝜙 :

• Red minority 𝜙 = 0.2, where the red group is underrepre-

sented relative to the blue group.

• Balanced groups 𝜙 = 0.5, where the red and blue groups are

evenly represented.

• Red majority group 𝜙 = 0.8, where the red group forms the

majority.

In addition to the group ratio, we adjust the homophily param-

eter 𝑝ℎ , which controls the likelihood of nodes within the same

group to connect. We explore values of 𝑝ℎ in the range from 0.1

to 0.9, capturing the range from strongly heterophilic (𝑝ℎ = 0.1)

to strongly homophilic (𝑝ℎ = 0.9) networks. We create symmetric

datasets, where the same homophily is assigned to both groups,

allowing us to evaluate networks where both groups follow similar

connectivity patterns. We also create asymmetric datasets, where

the homophily parameter between the red and the blue group is

different. In this case, we fix the homophily of the red group to be

neutral (𝑝𝑅
ℎ
= 0.5), and we vary the homophily of the blue group

𝑝𝐵
ℎ
, from 0.1 (heterophilic) to 0.9 (homophilic).

To address RQ1, we apply the original Louvain algorithm on each

of the synthetic networks; the results are shown in the first row

of Figures 1 (symmetric) and 2 (asymmetric). Our analysis reveals

that unfairness and diversity are correlated with the homophily

and the group size of the network. Specifically, higher homophily

is associated with increased unfairness and reduced diversity, as

nodes tend to connect with nodes of the same type, which reinforces

group isolation within communities.

The most favorable outcomes for both network fairness and

diversity occur when group sizes are balanced and homophily is

moderate, allowing cross-group interactions (Figure 2(c)). The high-

est levels of unfairness are observed when both groups exhibit high

homophily. As both red and blue homophily increase, the unfair-

ness metric moves further from zero, which indicates that both

groups are predominantly forming internal connections, leading to

high segregation between groups.

In cases of asymmetry (Figure 2), we observe distinct patterns

based on the homophily levels of the blue group. When the blue

group is the majority group (𝜙 = 0.2), fairness declines as the

group becomes more homophilic, with unfairness values becoming

increasingly negative. In contrast, when the blue group is the mi-

nority group (𝜙 = 0.8), communities become less unfair. Diversity

is higher when the blue group is the smaller one.

Similar patterns are also evident when Louvain is applied to the

real networks. The results for the proposed diversity and fairness

metrics are presented in Table 3 (Louvain). In particular, we find

that networks with high group size disparities, such as Pokec-a and

Facebook-c, exhibit high levels of unfairness within the detected

communities.

To investigate RQ2, we evaluate the various fairness-aware ap-

proaches, i.e, the fairness-gain, group-increase, and diversity-increase
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Table 2: Real dataset characteristics, 𝐾𝑋 : average degrees, Rh (Bh): red (blue) homophily.

Network #Nodes #Edges Attribute #Red nodes #Blue nodes �̄�𝑅 �̄�𝐵 �̄�𝑅𝑅 �̄�𝐵𝐵 �̄�𝑅𝐵
Rh Bh 𝜙

Pokec-g 1,632,636 22,301,602 Gender 804,335 828,301 26.33 28.28 5.18 6.39 15.49 0.770 0.922 0.492

Pokec-a 1,632,636 22,301,602 Age 239,785 1,392,851 15.95 29.27 0.79 13.40 2.47 0.394 1.149 0.146

Deezer 28,281 92,752 Gender 12,538 15,743 6.34 6.73 1.41 1.96 2.79 0.972 1.07 0.443

Facebook-g 4,039 88,234 Gender 1,533 2,506 45.75 42.42 10.24 13.48 15.45 1.236 0.995 0.378

Facebook-c 4,039 88,234 Education 367 3,672 31.38 44.92 2.94 21.18 2.54 1.481 1.066 0.090

Twitch 168,114 6,797,557 Maturity 79,033 89,081 88.25 74.31 24.57 19.80 34.69 1.292 0.924 0.470
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(l) L-Group-Increase Diversity

Figure 1: Symmetric Datasets

approaches introduced in Section 3. We use the prefix 𝐿 for the ap-

proaches that use the labeled group modularity. The group-increase

approach, where we increase the group modularity of the group

towards which there is unfairness, proved consistently the most

effective one. For the synthetic datasets, this is the red group when

𝜙 = 0.2 and the blue group when 𝜙 = 0.8. Rows 2 and 3 of Figures 1

and 2 show the results of the group-increase and L-group-increase

approaches on the synthetic networks. Both methods reduce unfair-

ness, but at the cost of an increase in the number of communities.

This pattern is also observed in the real-world datasets (Table 3

(Group-Increase) and (L-Group-Increase)), particularly in networks

with high group size imbalance, such as Pokec-a.

In terms of improving diversity, in Table 4, we report results

for the real datasets using the approach that achieves the highest

diversity gain. Interestingly, diversity-increase is the best one only

for Deezer. Also, for Pokec-g, the approach that increases the group

fairness of the benefited blue group performs best probably due to

the high number of diverse edges in this dataset. In general, while

there is improvement in diversity in most networks, such as Deezer

(0.157) and Twitch (0.053), this also leads to a notable increase in

the number of communities. This further underscores the challenge

of achieving fairness and diversity while maintaining cohesive

network structures. Additional results with other approaches are

found in the Appendix.

For the last research question, RQ3, we found that while all

approaches successfully improve their respective fairness objectives,

they often lead to an increase in the number of communities (second

and third rows of Figures 1 and 2). Notably, we find that the group-

increase modification is more effective at decreasing unfairness and

ensuring equitable distribution of edges across groups, particularly

in high homophily networks with group size disparity. However

this improvement comes at the cost of an increase in the number
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Table 3: Communities formed by different approaches.

Network Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Louvain
Pokec-g 41 0.716 -0.031 -0.031 0.180 0.192

Pokec-a 39 0.713 -0.589 -0.589 0.050 0.055

Deezer 89 0.683 -0.103 -0.101 0.141 0.160

Facebook-g 16 0.834 -0.167 -0.175 0.152 0.181

Facebook-c 16 0.834 -0.725 -0.722 0.038 0.042

Twitch 23 0.420 0.001 -0.004 0.043 0.090

Group-Increase Approach
Pokec-g 58,369 0.695 -0.019 -0.019 0.178 0.191

Pokec-a 179,082 0.616 -0.490 -0.490 0.052 0.056

Deezer 2,945 0.593 0 0 0.146 0.162

Facebook-g 204 0.818 -0.149 -0.157 0.154 0.181

Facebook-c 1,462 0.592 -0.480 -0.479 0.040 0.043

Twitch 5,396 0.394 0.005 0 0.042 0.087

L- Group-Increase Approach
Pokec-g 1,440 0.691 -0.024 -0.023 0.172 0.188

Pokec-a 7,645 0.658 -0.531 -0.531 0.057 0.058

Deezer 323 0.649 -0.061 -0.059 0.142 0.164

Facebook-g 17 0.830 -0.162 -0.169 0.152 0.182

Facebook-c 21 0.822 -0.711 -0.707 0.039 0.043

Twitch 526 0.384 0.004 -0.015 0.022 0.084

Table 4: Communities formed by the fairness-aware Louvain to improve diversity (various approaches used).

Network Approach Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Group-Increase (blue group) 41,273 0.705 -0.038 -0.038 0.181 0.194

Pokec-a Group-Increase (red group) 179,082 0.616 -0.490 -0.0490 0.052 0.057

Deezer Diversity-Increase 5,366 0.567 -0.063 -0.062 0.157 0.173

Facebook-g Group-Increase (red-group) 204 0.818 -0.149 -0.157 -0.154 0.182

Facebook-c Group-Increase (red-group) 1,462 0.592 -0.480 -0.479 0.041 0.043

Twitch Group-Increase (blue-group) 1,299 0.401 -0.005 -0.007 0.053 0.088

of communities and a reduction in modularity. In contrast, the L-

group-increase approaches are more effective in preserving high

modularity while limiting the number of communities, especially

in cases of group size disparity. However, they achieve a more

moderate improvement in fairness.

5 Related Work
Fairness in machine learning has received considerable attention

[12, 29, 31, 32, 35]. At a high-level, fairness models are distinguished

based on whether fairness is addressed at the level of individuals or

at the level of groups of individuals [13, 36]. In this paper, we study

the specific problem of group fairness of communities in networks.

Community detection is similar to the more general problem of

clustering defined as the task of grouping a set of objects in clusters

such that the objects in the same cluster are more similar to each

other than to those in other clusters [22]. In the case of communities,

nodes are grouped so that nodes inside each community, i.e, cluster,

are more tightly connected with each other than with nodes outside

the community [15]. Next, we place our work in the context of

previous work on fairness in community detection and clustering.

As opposed to our approach that defines fairness based on node

connections, most group fairness definitions are based on balancing

the representation of each group within each cluster. The balanced

approach to fairness in clustering was introduced in the seminal

work of fairlets [10] to ensure that each protected group must have

approximately equal representation in each cluster. The approach

has been extended along various directions, such as to support scal-

ability and distributed processing [3, 6, 8], more than one protected

group [5] and parametric fair representation [4].

A different model of proportionality fairness does not assume

protected groups but seeks fair treatment for any subset of points

[9]. A related notion but for individual fairness was studied in

[26] based on a previous formulation of the fair facility allocation

problem. A general definition of individual fairness in graph mining

is that similar nodes should receive similar output. Applying this

definition to graph clustering means that similar nodes should

receive similar cluster assignments [23]. Given a similarity matrix

that encodes the pair-wise similarity between nodes, this definition

results in each node having most of its neighbors in this graph in

the same cluster. The approach was extended in [38] for multiview

graph clustering. Yet another approach assumes the existence of a

representation graph between nodes and asks that the neighbors of

each node are proportionately represented in each cluster [18, 19].

In terms of fairness in clustering, another view considers the clus-

ter quality for each group. This approach is taken in the socially fair
𝑘-means clustering approach that seeks to minimize the maximum
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(d) Louvain Diversity
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(e) Group-Increase Communities
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(f) Group-Increase Modularity
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(g) Group-Increase Unfairness
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(i) L-Group-Increase Communities
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(j) L-Group-Increase Modularity
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(k) L-Group-Increase Unfairness
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(l) L-Group-Increase Diversity

Figure 2: Asymmetric Datasets

of the average 𝑘-means objective applied to each group [16] and

in equitable clustering that seeks to minimize the distance of each

point to its nearest center [1]. In a sense, group modularity follows

this view, since its goal is maintaining good clustering quality in

terms of intra-cluster connectivity for each group.

In contrast to previous work, in this paper, we define community

fairness using group modularity. Modularity has been refined to

promote mixed links, i.e., links connecting nodes of different color

in link recommendations [28]. This refinement is similar to our

definition of diversity under the first null model. Red modularity

using the first null model was introduced in a short paper [27].

Finally, in terms of algorithms for graph clustering, in this paper,

we propose a modularity-based algorithm. Most previous work on

addressing fairness considers algorithms based on spectral cluster-

ing, that add fairness constraints. Work in [24] adds constraints to

spectral clustering for balancing nodes and is extended in [37] for

scalability. Work in [23, 38] imposes individual fairness using spec-

tral clustering of the adjacency matrix combined with the similarity

matrix. Spectral-based approaches are also followed in [17–19].

6 Conclusions
In many real-world networks, communities are formed, where

nodes in each community are more tightly connected with the

nodes inside their community than with the nodes outside their

community. In this paper, we studied the fairness of such commu-

nities. Specifically, given that the nodes in a network belong to

different groups, we examine whether the nodes of each group are

equally well connected within the communities. To capture con-

nectivity fairness, we proposed group modularity, an adaptation

of modularity. We also used modularity to study the diversity of

communities, i.e., the percentage of inter-group edges within each

community. We proposed a fairness-aware Louvain-based algo-

rithm that detects communities with good modularity, and fairness,

or diversity. Our experimental evaluation showed the effects of

homophily and size discrepancy in the fairness and diversity of the

formed communities.

Our modularity-based metrics of fairness and diversity are or-

thogonal to the community detection algorithms used. As future

work, we plan to investigate alternative approaches to community

detection. Another directions for future work are understanding

the evolution of community fairness and diversity through time

and investigating approaches for improving the fairness and diver-

sity of communities by link recommendations, as for example in

previous work on improving Pagerank fairness [34], and fighting

opinion formation [2].
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A Appendix
A.1 Fairness-Aware Modularity detection

Proof of Lemma 3.1.

Proof. Let 𝐶𝑢 be the single node community the red node 𝑢

belongs to before 𝑢 is moved to 𝐶𝑖 . Moving 𝑢 only affects the mod-

ularity and diversity of 𝐶𝑢 and 𝐶𝑖 .

Before moving 𝑢, it holds:

𝑄𝑅 (𝐶𝑢 ) = − 1

2𝑚

(
𝑘2

𝑢

2𝑚

)
Before moving 𝑢:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚

(
2𝐼𝑛𝑅𝑅𝑖 + 𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑖𝐾
𝑅
𝑖

2𝑚

)
After moving 𝑢:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚
(2
𝐼𝑛𝑅𝑅
𝑖

+ 2

∑
𝑣∈𝐶𝑖 ,𝑣∈𝑅 𝑤 (𝑢, 𝑣) + 𝐼𝑛𝑅𝐵

𝑖
+ ∑

𝑣∈𝐶𝑖 ,𝑣∈𝐵 𝑤 (𝑢, 𝑣)
𝑚

−
(𝐾𝑖 + 𝑘𝑢 ) (𝐾𝑅𝑖 + 𝑘𝑢 )

2𝑚
)

Subtracting the before from the after values, we get Δ𝑄𝑅
𝑢→𝐶𝑖

.

For the blue modularity of𝐶𝑢 , before moving𝑢, we have𝑄𝐵 (𝐶𝑢 )
is 0.

Before moving 𝑢:

𝑄𝐵 (𝐶𝑖 ) =
1

2𝑚

(
2𝐼𝑛𝐵𝐵𝑖 + 𝐼𝑛𝐵𝑅𝑖 −

𝐾𝑖𝐾
𝐵
𝑖

2𝑚

)

https://arxiv.org/abs/2105.03714
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Table 5: Communities formed by the fairness-aware Louvain using the diversity increase (Diversity-Increase method).

Network Approach Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Diversity-Increase 110,564 0.678 -0.025 -0.024 0.178 0.191

Pokec-a Diversity-Increase 309,777 0.580 -0.454 -0.455 0.063 0.062

Deezer Diversity-Increase 5,366 0.567 -0.063 -0.062 0.157 0.173

Facebook-g Diversity-Increase 159 0.821 -0.154 -0.163 0.153 0.181

Facebook-c Diversity-Increase 229 0.728 -0.617 -0.615 0.040 0.43

Twitch Diversity-Increase 7,011 0.367 0.004 0 0.052 0.093

Table 6: Communities formed by the fairness-aware Louvain using the fairness-gain (Fairness-Gain method).

Network Approach Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Fairness-Gain 42 0.713 -0.031 -0.031 0.179 0.179

Pokec-a Fairness-Gain 36 0.709 -0.586 -0.586 0.049 0.055

Deezer Fairness-Gain 68 0.681 -0.102 -0.101 0.140 0.140

Facebook-g Fairness-Gain 17 0.823 -0.166 -0.171 0.146 0.179

Facebook-c Fairness-Gain 12 0.794 -0.688 -0.684 0.034 0.041

Twitch Fairness-Gain 26 0.422 0.002 0.001 0.039 0.091

After moving 𝑢:

𝑄𝐵 (𝐶𝑖 ) =
1

2𝑚

©­«2𝐼𝑛𝐵𝐵𝑖 + 𝐼𝑛𝐵𝑅𝑖 +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

(𝐾𝑖 + 𝑘𝑢 )𝐾𝐵𝑖
2𝑚

ª®¬
Subtracting the before from the after values, we get Δ𝑄𝐵

𝑢→𝐶𝑖
.

The diversity of 𝐶𝑢 before moving 𝑢 is 0.

Before moving 𝑢:

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

(
𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅
𝑖
𝐾𝐵
𝑖

𝑚

)
After moving 𝑢:

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚
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𝑚

ª®¬
Subtracting the before from the after values, we get Δ𝐷𝑅𝐵

𝑢→𝐶𝑖
. □

Merging Communities. With similar manipulations, we get the

red gain Δ𝑄𝑅
𝐶𝑖→𝐶𝑖

. of merging two communities, community 𝐶𝑖

and community 𝐶 𝑗 .

Let𝑊𝑋𝑌 be the number of edges between nodes of color 𝑋 in

community 𝐶𝑖 and nodes of color 𝑌 in community 𝐶 𝑗 . Let 𝐾𝑖 be

the sum of degrees of all nodes in community𝐶𝑖 , 𝐾
𝑋
𝑖

be the sum of

the degrees of all node of color 𝑋 in community𝐶𝑖 and 𝐾
𝑋𝑌
𝑖

be the

sum of the 𝑌 -colored degrees of the 𝑋 -colored nodes in community

𝐶𝑖 .

Δ𝑄𝑅𝐶𝑖→𝐶 𝑗
=
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2𝑚
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𝑅
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)
Proof of Lemma 3.2.

Proof. Again, let 𝐶𝑢 be the single node community of the red

node. Moving 𝑢 only affects the modularity and diversity of𝐶𝑢 and

𝐶𝑖 .

Before moving 𝑢, it holds:
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Table 7: Communities formed by the fairness-aware Louvain using the labeled diversity increase (L-Diversity-Increase method).

Network Approach Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g L-Diversity-Increase 140,789 0.632 -0.022 -0.021 0.162 0.181

Pokec-a L-Diversity-Increase 461,703 0.535 -0.414 -0.415 0.047 0.055

Deezer L-Diversity-Increase 6,079 0.542 -0.058 -0.059 0.137 0.165

Facebook-g L-Diversity-Increase 213 0.773 -0.146 -0.151 0.128 0.171

Facebook-c L-Diversity-Increase 1,478 0.575 -0.469 -0.471 0.034 0.040

Twitch L-Diversity-Increase 7,070 0.381 0 -0.005 0.015 0.085

Table 8: Communities formed by the fairness-aware Louvain using the labeled fairness-gain (L-Fairness-Gain).

Network Approach Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g L-Fairness-Gain 34 0.713 -0.031 -0.032 0.179 0.191

Pokec-a L-Fairness-Gain 36 0.714 -0.591 -0.591 0.051 0.055

Deezer L-Fairness-Gain 98 0.687 -0.104 -0.102 0.140 0.162

Facebook-g L-Fairness-Gain 15 0.834 -0.167 -0.175 0.152 0.181

Facebook-c L-Fairness-Gain 16 0.834 -0.725 -0.722 0.038 0.042

Twitch L-Fairness-Gain 22 0.423 0.001 -0.001 0.042 0.091

After moving 𝑢:

𝐷𝑅𝐵𝐿 (𝐶𝑖 ) =
1

2𝑚

©­«𝐼𝑛𝑅𝐵𝑖 +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

(𝐾𝑅𝐵
𝑖

+ 𝑘𝐵𝑢 )𝐾𝐵𝑅𝑖
𝑚𝑅𝐵

ª®¬
Subtracting the before from the after values, we get Δ𝐷𝑅𝐵

𝐿,𝑢→𝐶𝑖
.

□

Merging Communities (labeled modularity). With similar manip-

ulations, we get the labeled red gain, Δ𝑄𝑅
𝐿,𝐶𝑖→𝐶𝑖

. of merging two

communities, community 𝐶𝑖 and community 𝐶 𝑗 .

Δ𝑄𝑅𝐿,𝐶𝑖→𝐶 𝑗
=

1

2𝑚

(
2𝑊𝑅𝑅 +𝑊𝑅𝐵 −

𝐾𝑅𝐵
𝑖
𝐾𝐵𝑅
𝑗

+ 𝐾𝐵𝑅
𝑖
𝐾𝑅𝐵
𝑗

𝑚𝑅𝐵
−
𝐾𝑅𝑅
𝑖
𝐾𝑅𝑅
𝑗

𝑚𝑅𝑅

)
A.2 Additional Experiments
This section presents the experimental evaluation of various fairness-

aware modifications of the Louvain algorithm on both synthetic

and real-world networks. The objective of these experiments is to

assess the effectiveness of these modified algorithms in improv-

ing fairness and diversity within the detected communities, while

preserving the overall quality of the community structure.

In Tables 5-8, we present results on the real datasets using addi-

tional fairness-aware Louvain algorithms.

In Figures 3 and 4 , we present results on synthetic datasets using

the diversity gain and labeled diversity gain methods.

Figure 5 illustrates the trade-off between modularity and unfair-

ness metrics for various levels of blue homophily when 𝜙 = 0.2. In

these figures, we plot the difference in each metric between the com-

munities detected by the Louvain algorithm and those identified

by our fairness-aware methods.

• Plots (a) and (c) display results for the communities obtained

using the Group-Increase Method on symmetric and asym-

metric datasets, respectively.

• Plots (b) and (d) show the corresponding results for the la-
beled Group-Increase (L-Group-Increase) Method .

Our findings indicate that networks with higher homophily tend

to exhibit increased levels of unfairness. While our fairness-aware

algorithms achieve lower unfairness compared to Louvain, this

improvement comes at the expense of reduced modularity. This

trade-off becomes particularly pronounced at high homophily lev-

els, where the most significant gains in fairness are observed, but

at the cost of a noticeable drop in modularity.
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Figure 3: Symmetric Datasets
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Figure 4: Asymmetric Datasets
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Figure 5: Trade-off between Modularity Loss and Unfairness
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