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A fair label propagation community detection algorithm
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The widespread use of Machine Learning and Data Science algorithms in a variety of applications that affect our everyday lives has
raised concerns about possible biases in the output of these algorithms against minorities and under-represented groups. Consequently,
in the recent years, there has been a strong research effort towards creating algorithms with fairness guarantees. In this work, we
focus on fairness in community detection algorithms. Community detection is an important task in network analysis, where the
goal is to partition the nodes of a graph into subsets (communities), such that nodes are densely connected within the communities,
while sparsely connected across communities. We use balance as the fairness criterion for a community. We assume that nodes are
partitioned into groups, based on a sensitive attribute (e.g., gender for nodes of a social network), and we ask for the different groups to
have a balanced representation in the output communities. We propose a novel fair community detection algorithm that builds on the
popular Label Propagation approach. Our algorithm is inspired by Physics principles for incorporating fairness in the label propagation
process. We present experiments with our approach on different real and synthetic datasets, where we study the properties of our
algorithm and compare with baselines.
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1 Introduction

The AI revolution of the past decade has led to a world where many decisions that affect human lives are assisted by, or
deferred entirely to algorithmic systems trained on massive amounts of data. These decisions are often at an individual
level, ranging from simple ones, like where to dine, which movie to watch, or what information to consume, to more
important ones, such as which school to apply to, what career to follow, or what treatment to receive. Algorithms are
also involved in decisions at organizational, institutional and societal level including financial institutions (determining
who should get a loan), the judiciary system (affecting sentencing decisions), academics (influencing admissions), or
law enforcement (e.g., face recognition systems for suspect identification).

Given the critical role that algorithms play in our lives, there is increased concern as to whether the decisions of
these algorithms are ethical and just. These concerns are not unfounded. There is a stream of empirical evidence that
suggests that algorithms may exhibit biases in their decisions. For example, the COMPASS system, which determines
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2 Toulina et al.

the risk of recidivism, was shown to be biased towards African-American inmates, while Google Ads was shown to be
more likely to show ads for low-paid jobs to women than men. There are several such examples, where automated
systems are shown to exhibit bias against specific groups of individuals in very diverse settings [4].

The need for fairness guarantees on the output of algorithms gave rise to the research area of Responsible AI, and
Algorithmic Fairness. There has been significant effort in understanding and measuring algorithmic bias and fairness,
but also in mitigating these biases and designing fair algorithms [4]. Most of this effort has been directed towards
supervised learning tasks. However, recently, there has been interest in designing fair algorithms for unsupervised
learning tasks, such as clustering, or network analysis.

In this work, we focus on fairness for the problem of Community Detection in networks, where the goal is to partition
the nodes of a graph into subsets (communities), such that nodes are densely connected within the communities, while
sparsely connected across communities. Community detection is an important task in network analysis, with several
applications, and there is a variety of community detection algorithms, using different approaches [16].

Our objective is to design a community detection algorithm that produces fair communities, where fairness is
measured using the balance metric [10]. We assume that nodes are partitioned into groups, based on a sensitive attribute
(e.g., gender for nodes of a social network), and we ask for the different groups to have a balanced representation in the
output communities. Balance is a commonly used metric for fairness in clustering [9], which has also been employed
for community detection [23].

A popular community detection algorithm is the Label Propagation (LP) algorithm [29]. The algorithm uses a label
propagation method for finding communities. In brief, the algorithm initially assigns to the nodes in the graph distinct
labels. Then, it iteratively updates the labels, so that each node receives the most popular label in its neighborhood.
The result is that groups of densely connected nodes converge to the same label, which defines the community. The
algorithm is successful in identifying dense, well-separated communities. It has the advantage that it does not require
the number of communities as input, and it very efficient, since each iteration takes time linear in the number of edges
in the graph.

In this paper we propose a fair variant of the Label Propagation algorithm (FLP).We adopt a Physics-inspired
approach for our algorithm. In the original algorithm, when considering the labeling of a node, we view each label
in the neighborhood of a node as exerting a gravitational force to the node, proportional to the number of nodes in
the neighborhood that have this label. The most popular label is the one that pulls the node to its community. To
incorporate fairness in the mechanics of the algorithm, we also introduce the notion of an electrostatic charge for each
community, which is defined as the imbalance of the different groups in the community. For example, if we have two
groups red and blue, and the community is predominantly blue, then the charge of the community is positive, while if it
is predominantly red, it is negative. A node also has a charge +1 if it is blue, and -1 if it red. There is an electrostatic
force between the node and the neighbors in a community, that it is either attractive, if the node and the community
have charges of different polarity, or repellent if they have charges with the same polarity. An attractive force means
that the balance of the community improves if the node is added to the community, while a repellent force means that
the node addition makes the community more imbalanced.

The algorithm combines the gravitational and the electrostatic forces to perform the label propagation, providing a
trade-off between community quality and fairness. We perform experiments on real and synthetic datasets to explore
this trade-off. We also compare with popular fair spectral algorithms, both in terms of fairness, and community quality
on real and synthetic data.

In summary, in this paper, we make the following contributions:
Manuscript submitted to ACM
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A fair label propagation community detection algorithm 3

• Wepropose a novel fair community detection algorithm. Our algorithm builds upon the popular label propagation
algorithm, using Physics-inspired principles.

• We study the trade-off between community quality and fairness using real and synthetic datasets, and we show
that our algorithm can achieve fairness without sacrificing quality.

• We compare with a spectral algorithm for finding balanced communities on real and synthetic datasets, and we
show that our algorithm performs better in terms of fairness on "difficult" datasets.

The rest of the paper is structured as follows. In Section 2 we present the related work on fairness, and fair clustering
and community detection. In Section 3 we present the definition of fairness, and the vanilla label propagation algorithm.
In Section 4 we present our algorithm. Section 5 contains the experimental evaluation, and Section 6 concludes the
paper.

2 Related Work

Algorithmic fairness is a field that has attracted considerable interest in the past years [4]. It originated from the
study of fairness of supervised algorithms like classification [14], but has since expanded to other problems, including
unsupervised learning tasks, such as clustering [9], or graph mining [13].

There are typically two approaches to defining fairness: group fairness and individual fairness [4, 14]. We will focus
on the former. In group fairness, we assume that our input data is partitioned into groups according the the values of a
sensitive attribute; for example, in data regarding individuals, the sensitive attribute may be gender, race, or religion.
Group algorithmic fairness requires that the groups are treated equally by the algorithm. There are several ways of
defining what equal means [4]. In our setting, we consider representation fairness, where we want the groups to be
equally, or proportionally represented in the output of the algorithm.

The problem of community detection that we consider in this paper is an extension of the well-known clustering
problem to the case of graph data. There has been considerable amount of work on defining fairness for clustering, and
designing fair clustering algorithms [9], that consider both group fairness [3, 5, 8, 10, 17], and individual fairness [2,
6, 7, 22]. The definition of fairness that we will use for our work is that of balance, first introduced in the seminal
work about fairlets [10], This is a group fairness definition that requires that the groups are proportionally represented
in the output of the clustering. Intuitively, we want clusters that have members of all groups, and we want to avoid
clusters that contain exclusively members of a single group. The work in [10] was followed by several extensions and
modifications [3, 5, 19, 20, 30], that consider variants of the original problem.

Similar to clustering, community detection on graphs, asks for a partition of the nodes into sets (communities), such
that the induced subgraph defined by a community is well connected, while the connections of nodes across communities
are sparse. This is an important problem, with several applications that has received significant attention [15, 16]. There
are several algorithms for finding communities, that use different objectives [16]. The Label Propagation Algorithm we
consider [29] is a popular algorithm, because of its simplicity and its scalability.

There is limited amount of work on fairness of community detection algorithms. The work most related to ours
that in [23, 36] where they define a fair spectral algorithm that aims to achieve balanced communities. The objective is
similar to ours, but the technical approach is different. We compare against this algorithm in our experiments.

In [18, 25] they define fairness for communities using the modularity metric. Modularity looks at the connections of
the nodes in a community, compared to a null model where edges are created at random. Fairness is defined in this case
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4 Toulina et al.

by considering modularity among and between the groups. The notion of diversity fairness that they define is related
to the notion of balance, but the two metrics are distinct.

The work in [1] considers the problem of fairness for the densest subgraph problem, where the goal is to find one or
more subgraphs that maximize density. The notion of fairness they consider is similar to balance, since they require for
different groups to be equally represented in the selected subgraphs. They consider a spectral algorithm and impose
fairness constraints. The densest subgraph problem is related to the community detection, since it looks for subsets of
nodes that are densely connected, but has a different objective, as it does not aim to partition the nodes of the graph
into communities.

Finally, our work falls within the study of fair algorithms for network analysis [13]. There is significant amount
of work in this area, for tasks such as importance computation [34, 35], link recommendations [26], or influence
maximization [32, 33]. This work is related, but distinct from the work on community detection.

3 Preliminaries

In this section we introduce the problem of community detection, the definition of fairness, and the Label Propagation
algorithm that we will adapt to be fair.

Community Detection: For the following, we assume that we have as input a network 𝐺 = (𝑉 , 𝐸), with 𝑛 nodes
𝑉 = {𝑣1, 𝑣2, .., 𝑣𝑛} and edge-set 𝐸 = {(𝑣𝑖 , 𝑣 𝑗 )}. The output of a community detection algorithm is a partition of the nodes
into 𝑘 disjoint subsets (communities) C = {𝐶1,𝐶2, ..𝐶𝑘 }, 𝐶𝑖 ⊆ 𝑉 , 𝐶𝑖 ∩𝐶 𝑗 = ∅, ∪𝑘

𝑖=1𝐶𝑖 = 𝑉 . The number of communities
𝑘 may be given as input, or it is decided by the algorithm. There is a variety of community detection algorithms that
use different criteria to produce communities [16]. Typically, we require that the nodes in the community are densely
connected, while sparsely connected across communities.

Balance: To define fairness, we assume that the nodes of the graph 𝑉 are associated with some sensitive attribute 𝐴
that takes𝑚 values {𝑎1, ..., 𝑎𝑚}. For example, in a social network, where the nodes of the graph are individuals, the
sensitive attribute may be gender, religion, or race. The values of the sensitive attribute, partition the nodes of the graph
𝑉 = {𝑣1, ..., 𝑣𝑛} into𝑚 groups 𝐺 = {𝐺1,𝐺2, ..𝐺𝑚}, 𝐺𝑖 = {𝑣 ∈ 𝑉 : 𝐴(𝑣) = 𝑎𝑖 } depending on the attribute value 𝐴(𝑣) of
the nodes. In the following, we will often refer to the different attribute values, and the corresponding groups, as colors.

The fairness metric we will consider is balance. Balance was first defined in the seminal work of Chierichetti et
al. [10] for defining fairness and designing fair algorithms for the problem of clustering. The definition can be directly
applied to community detection, by simply substituting clusters with communities. For the following, we will assume
that we have two groups (colors) of nodes. We will refer to them as the blue group 𝐺𝑏 and the red group 𝐺𝑟 . For a
community 𝐶 , let 𝐶𝑏 and 𝐶𝑟 denote the subset of blue and red of nodes in 𝐶 respectively. We define the balance of
community 𝐶 as

bal(𝐶) = min

{
|𝐶𝑏 |
|𝐶𝑟 | ,

|𝐶𝑟 |
|𝐶𝑏 |

}
∈ [0, 1] (1)

A perfectly balanced community would have an equal number of red and blue nodes, resulting in a balance value of 1.
Given the definition of the balance of a community, we define the balance of a collection of communities C =

{𝐶1, . . . ,𝐶𝑘 } output by a community detection algorithm, as the weighted average of the balance of the communities in
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A fair label propagation community detection algorithm 5

C, that is,
bal(C) =

∑︁
𝐶𝑖 ∈C

|𝐶𝑖 |
𝑛

bal(𝐶𝑖 ) (2)

The balance of the collection of the communities is again in [0, 1], with 1 corresponding to the case of a collection of
perfectly balanced communities.

The Label Propagation Algorithm: The label propagation algorithm (LP) was first introduced in [29] for community
detection in networks. The main idea of the algorithm is to assign labels to the nodes, and then propagate these labels,
each time a node adopting the most popular label in its neighborhood. More specifically, initially each node is assigned
a unique label, usually the id of the node. Then the algorithm proceeds iteratively. In each iteration, each node updates
their label, adopting the most frequent label in their neighborhood. If there are ties, the adopted label is selected at
random. The algorithm terminates when no node changes label.

The result of the LP algorithm is that densely connected nodes are likely to adopt the same label. The algorithm is
very efficient, as each iteration takes time linear on the number of the edges in the graph. It also has the advantage that
it does not require the number of communities to be specified in advance. It is a popular algorithm commonly used for
detecting communities.

A weakness of the algorithm is that, when the updates are asynchronous, the resulting communities depend heavily
on the random order in which the nodes are considered, while in the case of synchronous updates, it is not guaranteed
that the algorithm will converge [12, 24]. To address these issues, the work in [12] proposed a variation of the LP
algorithm that performs semi-synchronous updates of the labels. The algorithm first uses a greedy algorithm to obtain
a coloring of the graph, such that no two connected nodes have the same color. Nodes with the same color update
their labels synchronously, since the label of the one does not affect the label of the other. In the presence of ties, a
predetermined order is followed of selecting the label (the largest label id), so that results are consistent in different
runs. The stopping criterion is when all nodes in the graph have the most frequent label in their neighborhood. The
pseudocode for the algorithm is shown in Algorithm 1. In the pseudocode, we use 𝑁 (𝑣) to denote the neighborhood of
node 𝑣 , while 1 is an indicator function that takes values 1 or 0, if the input condition is true or not. This version of the
LP algorithm is effective, efficient, and stable, making it a solid foundation for our fair algorithm.

4 The Fair Label Propagation Algorithm

In this section we present the Fair Label Propagation algorithm (FLP). Our algorithm builds upon the vanilla LP algorithm
we described in Section 3.

To incorporate fairness (balance) in the label propagation process, we take a Physics-inspired view of the LP algorithm.
We assume that nodes are objects of with mass, that exert a gravitational force to each other. Recall that, from Newton’s
law, the gravitational force between two objects of mass𝑚1 and𝑚2 at distance 𝑑 is

𝐹𝑔 (𝑚1,𝑚2) = 𝐾𝑔
𝑚1𝑚2
𝑑2

where 𝐾𝑔 is the gravitational constant. In our case, we will assume that nodes have unit mass, and that gravitational
force is exerted only between connected nodes that are at distance 1. Therefore, a node 𝑣 is pulled by all of its neighbors
𝑢 ∈ 𝑁 (𝑣) with force 𝐹𝑔 (𝑢, 𝑣) = 𝐾𝑔 .

Consider now an iteration of the LP algorithm. Let 𝑁ℓ (𝑣) denote the neighbors of 𝑣 with label ℓ . The community 𝐶ℓ
pulls node 𝑣 with force 𝐹𝑔 (𝐶ℓ , 𝑣) = 𝐾𝑔 |𝑁ℓ (𝑉 ) |. Node 𝑣 is assigned to the community 𝐶ℓ that pulls node 𝑣 the strongest,
that is, the most popular community in the neighborhood of 𝑣 .
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6 Toulina et al.

Algorithm 1 Semi-Synchronous Label Propagation (LP)

Require: Graph 𝐺 = (𝑉 , 𝐸), with 𝑛 nodes with𝑚 edges.
1: Initialization:
2: for all 𝑣 ∈ 𝑉 do
3: Assign a unique label 𝐿(𝑣) = 𝑣 .
4: end for
5: Network Coloring:
6: Perform a coloring of the nodes in 𝑉 , such that color(𝑢) ≠ color(𝑣) for all (𝑢, 𝑣) ∈ 𝐸.
7: Colors = The set of all distinct colors
8: Iterative Label Propagation:
9: repeat
10: for all color ∈ Colors do
11: 𝑉color = {𝑣 ∈ 𝑉 : color(𝑣) = color}
12: for all 𝑣 ∈ 𝑉color do
13: 𝑁ℓ (𝑣) = {𝑢 ∈ 𝑁 (𝑣) : 𝐿(𝑢) == ℓ}
14: 𝐿(𝑣) = argmaxℓ |𝑁ℓ (𝑣) |
15: end for
16: end for
17: until Stopping Criterion is met
18: Stopping Criterion:
19: All nodes 𝑣 ∈ 𝑉 have the most frequent label among the labels in 𝑁 (𝑣).

To incorporate fairness (balance) in the LP algorithm, we introduce an additional electrostatic force between connected
nodes. In addition to the mass, we also assume that each node 𝑣 has a charge 𝑞𝑣 . The magnitude of the charge depends
on the imbalance of the community node 𝑣 belongs to. We define the imbalance of a community 𝐶 as

imb(𝐶) = 1 − bal(𝐶)

A node 𝑣 that belongs to community 𝐶 has a charge 𝑞𝑣 with magnitude |𝑞𝑣 | = imb(𝐶).
The polarity of the charge depends on the majority color in the community𝐶 . Without loss of generality, we assume

that if the majority color is red, that is, |𝐶𝑟 | > |𝐶𝑏 |, then the charge is positive. In this case we say that community 𝐶 is
a red community. If the majority color in 𝐶 is blue (community 𝐶 is a blue community), that is, |𝐶𝑏 | > |𝐶𝑟 |, then the
charge is negative. Note that a single red blue node has charge +1, a single blue node has charge −1, while a balanced
community has charge 0.

The electrostatic force between two charged objects is governed by Coulomb’s law. For two objects with charges 𝑞1
and 𝑞2 at distance 𝑑 , the magnitude of the force is:

|𝐹𝑒 (𝑞1, 𝑞2) | = 𝐾𝑐
|𝑞1 | |𝑞2 |
𝑑2

The force is attractive if the charges have opposite sign, and repellent if the signs are the same. In our case, we assume
that two connected nodes (𝑢, 𝑣) are at distance 1, and exert electrostatic force to each other. The force is directionless,
so we only care about the sign and the magnitude of the force. Therefore, we have: 𝐹𝑒 (𝑢, 𝑣) = −𝐾𝑐𝑞𝑢𝑞𝑣 .

We are now ready to define the fair Label Propagation algorithm (FLP) algorithm. The algorithm proceeds similar to
in iterations LP, where at each iteration each node is assigned a label from the labels of the nodes in its neighborhood.
When assigning a label to node 𝑣 , the algorithm also computes the electrostatic force that a community 𝐶ℓ in the
neighborhood of 𝑣 exerts to the node. Note that the charge of the node 𝑣 has magnitude |𝑞𝑣 | = 1, while the charge
Manuscript submitted to ACM
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A fair label propagation community detection algorithm 7

of neighbor 𝑢 in the 𝐶ℓ community has charge with magnitude |𝑞𝑢 | = imb(𝐶ℓ ). Therefore, the electrostatic force of
community 𝐶ℓ to node 𝑣 is:

𝐹𝑒 (𝐶ℓ , 𝑣) = 𝛿 (𝑣,𝐶ℓ )𝐾𝑐 |𝑁ℓ (𝑣) |imb(𝐶ℓ )

where 𝛿 (𝑣,𝐶ℓ ) = +1 if 𝑣 and 𝐶ℓ have the same color, and 𝛿 (𝑣,𝐶𝑒𝑙𝑙) = −1 if they have different color.
The electrostatic force captures the effect of node 𝑣 on the balance of the community 𝐶ℓ . An attractive (positive)

force means that the community and the node have different color, the community 𝐶ℓ is unbalanced, and thus it needs
node 𝑣 to improve its balance. The strongest the force, the more unbalanced the community. A repellent (negative)
force means that the community and the node have the same color, and thus, adding the node to the community will
further increase the imbalance of the community.

The FLP algorithm computes the total force 𝐹 (𝐶ℓ , 𝑣) that the community 𝐶ℓ exerts on node 𝑣 , by combining the
gravitational and electrostatic force, that is:

𝐹 (𝐶ℓ , 𝑣) = 𝐹𝑔 (𝐶ℓ , 𝑣) + 𝐹𝑒 (𝐶ℓ , 𝑣)

It then assigns the node to community 𝐶ℓ that exerts the highest force. The outline of the algorithm is shown in
Algorithm 2.

Algorithm 2 Fair Label Propagation (FLP)

Require: Graph 𝐺 = (𝑉 , 𝐸), with 𝑛 nodes with𝑚 edges, the group memberships 𝐺 = {𝐺𝑏 ,𝐺𝑟 }, and parameters 𝐾𝑔, 𝐾𝑐 ,
such that 𝐾𝑔 + 𝐾𝑐 = 1.

1: Initialization:
2: for all 𝑣 ∈ 𝑉 do
3: Assign a unique label 𝐿(𝑣) = 𝑣 .
4: end for
5: Network Coloring:
6: Perform a coloring of the nodes in 𝑉 , such that color(𝑢) ≠ color(𝑣) for all (𝑢, 𝑣) ∈ 𝐸.
7: Colors = The set of all distinct colors
8: Iterative Label Propagation:
9: repeat
10: for all color ∈ Colors do
11: 𝑉color = {𝑣 ∈ 𝑉 : color(𝑣) = color}
12: for all 𝑣 ∈ 𝑉color do
13: 𝑁ℓ (𝑣) = {𝑢 ∈ 𝑁 (𝑣) : 𝐿(𝑢) == ℓ}
14: 𝐹𝑔 (𝐶ℓ , 𝑣) = 𝐾𝑔 |𝑁ℓ (𝑣) |
15: 𝐹𝑒 (𝐶ℓ , 𝑣) = 𝛿 (𝑣,𝐶ℓ )𝐾𝑐 |𝑁ℓ (𝑣) |imb(𝐶ℓ )
16: 𝐹 (𝐶ℓ , 𝑣) = 𝐹𝑔 (𝐶ℓ , 𝑣) + 𝐹𝑒 (𝐶ℓ , 𝑣)
17: 𝐿(𝑣) = argmaxℓ 𝐹 (𝐶ℓ , 𝑣)
18: end for
19: end for
20: until Stopping Criterion is met
21: Stopping Criterion:
22: All nodes 𝑣 ∈ 𝑉 have the most frequent label among the labels in 𝑁 (𝑣).

By combining the two forces, the algorithm aims to combine two objectives: The quality of the output communities,
which is achieved by the gravitational force, as in the vanilla LP algorithm, and the fairness of the output communities,
which is achieved by the electrostatic force. To explore the trade-off between the two, we set the parameters 𝐾𝑔 and
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𝐾𝑐 , such that 𝐾𝑔 + 𝐾𝑐 = 1. Higher values of 𝐾𝑐 place more emphasis on fairness. The value 𝐾𝑐 = 0 corresponds to the
vanilla LP algorithm, while the case 𝐾𝑐 = 1 puts all the emphasis on fairness. Note that the complexity of the algorithm
remains unchanged.

5 Experiments

We now present the experimental evaluation of our proposed algorithm. The goal of the experiments is two-fold:
Explore the trade-off between fairness and clustering quality, by varying the parameters of the FLP algorithm; Compare
with baselines, and understand how the characteristics of the datasets affect the performance of the algorithms, in
terms of both fairness and quality.

5.1 Datasets

For our experiments with use both real and synthetic datasets.

Real DatasetsWe use the following real datasets:

• Friendship: The Friendship Net1 [27] is a network that corresponds to the friendship relations between students
in a high school in Marseilles, France. The sensitive attribute is the gender of the students.

• Facebook: The Facebook Net1 [27] consists of a friends list from students in same high school with the Friendship
Net. The sensitive attribute is again the gender.

• Political Blogs: The Political Blogs2 is a network defined over a collection of blogs on US politics, with edges
representing hyperlinks between the blogs. The sensitive attribute is the political affiliation (conservative or
liberal) of the blog.

For all networks, nodes without or unknown attribute value have been removed, and the largest connected component
is extracted and used. The characteristics of the datasets, and the balance of the network as a whole are shown in Table 1

Dataset Nodes Edges Features Network Balance
Friendship Net 134 406 Gender 0.68
Facebook Net 156 1437 Gender 0.81
Political Blogs 1222 16714 Political Affiliation 0.92

Table 1. Real Datasets

Synthetic Datasets
To understand the properties of our algorithm as the characteristics of the input dataset change we also employ

synthetic datasets, generated by a variant of the stochastic block model defined in [10]. The model assumes that the
nodes are partitioned into 𝑘 planted communities 𝑇 = {𝑇1, ...,𝑇𝑘 }. We will refer to the planted communities as clusters,
to discriminate from the output communities. The nodes are also partitioned into two groups 𝐺 = {𝐺𝑟 ,𝐺𝑏 }. The model
is defined by four parameters: 𝑎, 𝑏, 𝑐 , and 𝑑 , that determine the probability of a connection of two nodes 𝑢, 𝑣 , depending
on the group and cluster membership. Specifically: The probability of nodes 𝑢 and 𝑣 to be connected, if they belong in
the same cluster 𝑇𝑖 and the same group 𝐺 𝑗 is 𝑎; The probability of nodes 𝑢 and 𝑣 to be connected, if they belong in the
same group 𝐺 𝑗 , but different clusters 𝑇𝑖 ,𝑇𝑘 is 𝑏; The probability of nodes 𝑢 and 𝑣 to be connected, if they belong in

1http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
2https://websites.umich.edu/~mejn/netdata/
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A fair label propagation community detection algorithm 9

the same cluster 𝑇𝑖 but different groups 𝐺𝑟 ,𝐺𝑏 is 𝑐 ; The probability of nodes 𝑢 and 𝑣 to be connected, if they belong in
different clusters 𝑇𝑖 ,𝑇𝑗 and different groups 𝐺𝑟 ,𝐺𝑏 is 𝑑 . We have 𝑎 > 𝑏 > 𝑐 > 𝑑 . Therefore, the datasets are constructed
such that traditional community detection algorithms will tend to generate monochromatic communities, by placing
together nodes from the same group. The goal is to study if the fair community detection algorithms are able to generate
fair communities, ideally by recovering the planted clusters.

5.2 Baselines

We compare the FLP algorithm against the Fair Spectral algorithm introduced in [23]. Spectral clustering is a method
for clustering data represented as graphs. It relies on Laplacian matrix and aims to minimize the ratio cut objective
function [21, 31], which measures the quality of the graph partition. The fair Spectral clustering [23] incorporates
fairness constraints in the vanilla Spectral clustering. The goal is that every cluster contains approximately the same
number of elements of each group [10]. There are two versions: the unnormalized and the normalized one. The
unnormalized fair spectral clustering (UFSP), constructs the Laplacian, projects it onto the null space defined by the
fairness constraints, and computes the eigenvectors corresponding to the smallest eigenvalues of the Laplacian. Then it
performs k-means clustering, producing fair and high-quality clusters The normalized fair spectral clustering (NFSP), is
similar to (UFSP) but adapted to the normalized cut and using the normalized Laplacian. The NFSP algorithm improves
the performance when clusters have imbalanced sizes.

5.3 Experimental results

5.3.1 Fairness-Quality trade-off. In our first line of experiments, we aim to understand how the performance of our
algorithm changes as we vary the 𝐾𝑐 parameter of the algorithm. The parameter 𝐾𝑐 determines the effect of the
electrostatic force in the selection of a node of the label to adopt, and determines the influence of the fairness criterion
in the formation of the communities. The parameter 𝐾𝑐 takes values between 0 and 1. The extreme case where 𝐾𝑐 = 0
corresponds to the vanilla LP algorithm, that does not take fairness considerations into account. The extreme case
where 𝐾𝑐 = 1makes decisions solely on the account of balance. The values of 𝐾𝑐 between 0 and 1, implement a trade-off
between finding well-connected communities, and achieving fairness.

In order to study the effect of 𝐾𝑐 we use synthetic datasets, for which we have control over the number of planted
clusters, the arrangement of the colors on the nodes, and the connectivity between different types of nodes. We set the
parameter values as follows: 𝑎 = 0.1,𝑏 = 0.01, 𝑐 = 0.001, and 𝑑 = 0.0001. The number of groups is 2, and for the number
of clusters we use the values 𝑘 ∈ {2, 3, 4, 5}. Each cluster has 400 nodes, 200 of which are red and 200 are blue. The
parameter 𝐾𝑐 takes values from 0 to 1, in steps of 0.1. We measure fairness, quality, and the number of clusters. Our
measurements are averages over 10 different datasets.

Fairness is measured using the balance metric, while the quality of the communities is measured usingmodularity [11,
28]. Modularity is a popular measure of community quality, that measures the divergence between the actual number
of intra-community edges, and the expected number of intra-community edges, if edges were generated at random,
such that the node degrees are preserved. Specifically, the modularity of a community 𝐶 , 𝑄 (𝐶), is defined as [28]:

𝑄 (𝐶) = 1
2𝑚

©­«
∑︁
𝑣,𝑢∈𝐶

𝐴𝑢𝑣 −
𝑁𝑢 𝑁𝑣

2𝑚
ª®¬

where 𝐴 is the adjacency matrix of 𝐺 ,𝑚 the number of edges in 𝐺 and 𝑁𝑢 , 𝑁𝑣 the degrees of node 𝑢 and 𝑣 respectively.
High positive values of modularity indicate well connected communities, while low, or negative values of modularity
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Fig. 1. Fairness-Quality trade-off

sparsely connected communities. The modularity of a collection of communities is the sum of the modularities of the
communities. Note that the modularity of the whole dataset is zero.

Figure 1 shows our results. We observe that the vanilla LP algorithm (𝐾𝑐 = 0) achieves the highest modularity, but
very poor fairness, since the communities created are monochromatic. As the value of 𝐾𝑐 increases the fairness of the
output improves, reaching the maximum for 𝐾𝑐 ≥ 0.4. At the same time, modularity decreases slowly, up to 𝐾𝑐 = 0.8,
and then drops significantly. For 𝐾𝑐 = 0.9 the strength of the electrostatic force results in grouping together nodes from
different colors even when they belong to different clusters, sometimes in a single community. These communities are
sparsely connected, thus bringing modularity down.

It is interesting to observe what happens in the extreme case when𝐾𝑐 = 1. In this case the selection of the label is done
based solely on the electrostatic force. This forces bi-chromatic edges to merge form communities. Then communities
are built around these bi-chromatic edges, and the number of output communities is usually close to the number of
bi-chromatic edges.

Overall, from our results we conclude that a good range for𝐾𝑐 is in [0.4, 0.7], where we strike a good balance between
fairness and quality. For the remaining our our experiments, we will use 𝐾𝑐 = 0.5 as the default value, giving equal
weight to the gravitational and electrostatic forces.

5.3.2 Comparison with Fair Spectral on Synthetic Datasets. In the next line of experiments, we evaluate the performance
of the FLP algorithm, as we vary the “hardness” of the synthetic datasets we create, and we compare with the fair spectral
algorithms. Specifically, we generate synthetic dataset where we vary the ratio 𝑏/𝑐 of the probability of connecting two
nodes 𝑢, 𝑣 , that belong to the different clusters, but are of the same color, over the probability of connecting two nodes
that are in the same community but are of different color. We can think the former set of edges as unfair edges that will
misguide the algorithm into creating unfair communities, while the latter as fair edges that will guide the algorithm
into creating fair communities. The higher the ratio, the harder for an algorithm to bring together nodes of different
colors in the same community.

We consider the values {5, 10, 15, 20} for the ratio 𝑏/𝑐 . We control the ratio 𝑏/𝑐 by varying the parameter 𝑐 , that is,
we use the default parameters 0.1, 0.01, 0.0001, for the parameters 𝑎, 𝑏, 𝑑 , while 𝑐 takes values 0.002, 0.001, 0.0006, 0.0005.
We set the number of clusters to 𝑘 = 4. We use 𝐾𝑐 = 0.5 for the FLP algorithm, and we also consider the vanilla LP
algorithm. We also ran the spectral algorithms UFSP and NFSP for 4 communities. All the results we report are the
averages over 10 different random graphs.

Figure 2 shows our results. We plot the balance, modularity, and number of communities. We observe that our
algorithm achieves almost perfect balance for all settings of the ratio 𝑏/𝑐 . On the other hand, the balance for the spectral
Manuscript submitted to ACM
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Fig. 2. Label Propagation and Spectral algorithms on Synthetic Data: Balance, Modularity, Number of Communities.

algorithms deteriorates as the dataset becomes harder. As bichromatic edges become increasingly rare in comparison
to single color edges, the spectral algorithms tend to bring together nodes of the same color and separate nodes of
different color, leading to unfairness.

The FLP algorithm has lower modularity than the spectral algorithms. Since the FLP algorithm creates balanced
communities, this means that it puts together nodes of different color, which are sparsely connected. On the other hand,
the spectral algorithms are more likely to create monochromatic communities, which are better connected, and have
higher modularity. As a result modularity for FLP is lower, as expected from the fairness-quality trade-off.

Looking at the number of communities output by the FLP algorithm, we observe that it is on average lower than
4, the number of planted clusters. This indicates that the algorithm sometimes merges different clusters while still
preserving balance.

Algorithm Balance Modularity #Communities
Friendship Net

LP 0.45 0.68 17
FLP 0.60 0.64 14
UFSP 0.66 0.024 14
NFSP 0.53 0.0078 14

Facebook Net
LP 0.54 0.43 3
FLP 0.72 0.37 5
UFSP 0.80 0.009 5
NFSP 0.81 0.01 5

Political Blogs
LP 0.05 0.43 11
FLP 0.92 -3.62E-06 2
UFSP 0.92 -3.62E-06 2
NFSP 0.92 0.0006 2

Table 2. Results on multiple datasets

5.3.3 Results on Real Datasets. The last set of experiments is on the real datasets we consider. In Table 2 we show the
performance of the different algorithms for the three real datasets we consider. Since we have no ground truth about
the “correct” number of communities, we run the spectral algorithms for the same number of communities as those
output by the FLP algorithm.
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Interestingly, each dataset exhibits a different behavior. For the Political Blogs dataset we observe that all fair
algorithms achieve balance equal to the network balance. This is due to the fact that all algorithms form a giant
community that contains almost all nodes, and a second very small one, This is also indicated by the fact that modularity
is close to zero (which is the case when we have a single community). In the Political Blogs graph the red and blue
groups are highly segregated, so it is hard to form meaningfully connected communities that are balanced. The result is
that the algorithms merge almost all the nodes in a single community.

For the Facebook dataset, we observe that the spectral algorithms perform better than FLP in terms of fairness,
achieving a better balance. However, the modularity of the resulting communities is close to zero, indicating very poor
connectivity between the nodes in the community. The FLP algorithm achieves modularity competitive to that of the
LP algorithm, while improving significantly the balance of the communities compared to LP. Therefore, it strikes a
better balance between fairness and quality in the output.

Finally, we observe a similar behavior for the Friendship dataset. In this case, the FLP algorithm achieves the second-
best balance, between the UFSP algorithm and the NFSP algorithm. It is again considerably better in terms of modularity,
indicating better connected communities.

6 Discussion and Conclusion

In this paper we consider the problem of fairness for the problem of community detection on graphs. We consider
balance as the fairness criterion for communities, and we propose an algorithm for creating well-connected and fair
communities. Our algorithm is inspired by Physics principles, and it modifies the popular label propagation algorithm,
introducing fairness in the propagation. We evaluate our algorithm experimentally, and we compare against fair spectral
algorithms. We show that our algorithm is able to achieve a good trade-off between balance and quality.

For future work, it would be interesting to extend our algorithm to handle sensitive attributes with more than two
values. Furthermore, we want to better exploit the distance in the definition of the gravitational and electrostatic forces,
which is currently simply set to 1 for connected nodes. Finally, it would be interesting to explore if a variation of our
algorithm could be applicable to numerical data, where there is no graph structure.

Acknowledgments: This work has been implemented within the framework of the H.F.R.I call “Basic Research
Financing" (H.F.R.I. Project Number: 016636), under the National Recovery and Resilience Plan "Greece 2.0,” funded by
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