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Abstract—Counterfactual explanations can be used as a means
to explain a models decision process and to provide recom-
mendations to users on how to improve their current status.
The difficulty to apply these counterfactual recommendations
from the users perspective, also known as burden, may be used
to assess the models algorithmic fairness and to provide fair
recommendations among different sensitive feature groups. We
propose a novel model-agnostic, mathematical programming-
based, group counterfactual algorithm that can: (1) detect biases
via group counterfactual burden, (2) produce fair recommenda-
tions among sensitive groups and (3) identify relevant subgroups
of instances through shared counterfactuals. We analyze these
capabilities from the perspective of recourse fairness, and em-
pirically compare our proposed method with the state-of-the-art
algorithms for group counterfactual generation in order to assess
the bias identification and the capabilities in group counterfactual
effectiveness and burden minimization.

Index Terms—Counterfactual explanations, Algorithmic Fair-
ness, Group counterfactuals, Local explainability

I. INTRODUCTION

Counterfactual explanations help us understand opaque ma-
chine learning (ML) models by exploring ’what-if’ scenarios
for individual instances [1]. The word counterfactual may be
used as a noun to refer to the instances that are counterfactual
points themselves, or as an adjective to describe the points, the
explanations, or the reasoning itself. We will use the shorthand
CF to abbreviate the word “counterfactual”. Given a dataset
and a trained classifier that maps input instances to class
labels, CF explanations can highlight the relevant feature value
changes for an instance of interest that would result in an
alternative predicted class label [1]–[3]. Consequently, a CF
is also known as a recourse [4], since it suggests actions to
improve the situation of a given instance [1], [2], [4]–[6]. For
example, CF explanations may highlight the changes on the
features of an individual (e.g., marital status, habits, education,
occupation) to obtain a positive answer on a loan application,
or to move from a low-wealth to a high-wealth status [4], [5].
Usually, the closest point with the desired label is selected as
a CF for the given instance [1], since that reduces the feature
changes the instance must apply to reach the desired label.

Nonetheless, with sensitive features, such as gender, race,
or age, the suggested changes may hide biases across the
sensitive groups, which are not trivial to detect or measure.
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Fig. 1: Burden for sensitive groups (x-axis) belonging to differ-
ent features (colors), showing biases on Adult and COMPAS.

These biases, if left undetected or unattended, could lead
to unfair and harmful outcomes. The assessment of model
biases or algorithmic fairness through the recommendations
suggested by CFs is known as counterfactual fairness [6]–
[9]. For example, consider the fairness assessment of two
commonly used public datasets: Adult1 and COMPAS2. For
Adult, the class label indicates whether a person earns over
$50K/year or not, whereas for COMPAS it indicates whether
a person is a recidivist (a person recommitting crimes). Fig. 1
illustrates the average difficulty in achieving the desired state
(i.e., high wealth or no recidivism) in the form of a measure
called burden [4], [5]. Burden is the distance between an
instance and its closest CF, and the figure shows its aggregated
value per sensitive group. We observe a higher aggregated
burden for females than for males in wealth prediction (Fig.
1a), implying that it is harder for females to achieve higher
wealth. Moreover, we observe that it is harder for males than
for females to not be recidivists (Fig. 1b). Similarly, it is harder
for non-white people to achieve higher wealth, and harder for
African-Americans to not be recidivists.

While the generation of individual CFs provides personal-
ized and actionable recommendations, these CFs may include
biases across sensitive feature groups, such as the ones ob-
served in Fig. 1. Such biases cannot be easily mitigated when

1https://archive.ics.uci.edu/dataset/2/adult
2https://www.kaggle.com/datasets/danofer/compass
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generating individual CFs, since each individual CF ignores
other groups, leading to biased CF recommendations.

This is a problem when trying to explain biased models
that are already trained. For example, if a group of 10 males
and a group of 100 females receive a loan rejection, and the
average recommendation for males is to increase their salary
by $10K, while for females the recommended increase is by
$25K, the model is biased not only in its predictions but
also in the CF recommendations. Hence, the model should
be retrained to address these biases, so that these groups
receive similar recommendations in relation to their gender
or any other sensitive feature. To solve this, we consider not
an individual but a group-based CF generation approach that
permits the assessment of fairness across sensitive groups.

Existing group CF algorithms obtain CFs through rule
mining and effectiveness maximization [7], [10], which is the
ratio of instances in the group that can apply changes to
their own features to reach the feature values of the group
CF. These algorithms follow two steps: (1) mine the frequent
subgroups of the undesired class label and (2) mine the
frequent subgroups of the desired class. While these methods
provide subgroup identification and group CFs for fairness
assessment, they suffer from two drawbacks: (1) the problem
of fair CF generation is not addressed and (2) the relevant
subgroups are not selected through the CF generation process.
As a result, the solution space is limited and the generated CFs
have a high burden and low effectiveness. Existing attempts to
address these drawbacks are constrained to linear or decision-
tree based models [8] and by the inability to output fair CFs
among sensitive groups. We propose a method that can address
these two drawbacks while also providing fairness assessment.

In this work we make the following contributions:
• Novelty: We propose CounterFair, a model-agnostic CF

generation algorithm for assessing group CF fairness and
generating fair CF recommendations. CounterFair can
prioritize either burden minimization, subgroup identifi-
cation, or fair recourse generation, leading to either more
granular, group-oriented, or fairness-oriented CFs.

• Bias detection: We demonstrate the bias detection ability
of CounterFair. We further provide an analysis of the
results for individual and group CFs, showing that the
bias detection capacity is related to the number of distinct
groups and is increased when minimizing for burden.

• Actionability-oriented fairness: We show the ability
of CounterFair to generate fair CF recommendations by
minimizing the burden variance among sensitive groups.

• Evaluation: Our experimental evaluation shows that
CounterFair outperforms state-of-the-art group CF com-
petitors on six public fairness-related datasets in terms of
burden minimization and effectiveness maximization.

II. RELATED WORK

CF explanations are usually obtained for single instances
[1], [2], [4], [11]. Different application scenarios are consid-
ered, including recommender system explanations for individ-
ual user-item combinations [12]. A few recent studies focused

on group CFs [7], [8], [10]. There are several ways to generate
group CFs. One way is to jointly generate a CF for each
instance, to, for example, make their distribution similar to
that of the dataset (one-to-one way) [8], [13]. Another way is
to get several CFs for a single instance to maximize recourse
diversity (many-for-one way) [14]. Finally, getting a CF for a
group to characterize its instances (one-for-many way) [8].

Finding optimal group CFs is analogous to optimally lo-
cating facilities, such as hospitals or production plants [15].
This is known as the location analysis problem solved using
mathematical programming (MP) [8]. CF algorithms, like the
Actionable Recourse [11], use MP but are constrained to linear
classifiers due to the difficulty in formulating the nonlinearities
of highly accurate ML models. To preserve the formulation
linearity and convexity, as well as the solutions optimality,
one may apply a graph-oriented approach [16].

Other group CF approaches exist: Kavouras et al. [7]
and Rawal and Lakkaraju [10] developed Fairness Aware
Counterfactuals for Subgroups (FACTS) and Actionable Re-
course Summaries (AReS), respectively, to generate group CFs
through rule mining. The rules are in the form of a predicate
and an action, e.g., if gender == female then salary ≥ $80K.
FACTS first finds subgroups from the undesired class label
instances and sets of actions for these subgroups from the
desired class using FP-growth. Then, for these subgroups,
the algorithm finds their intersection, i.e., the subgroups or
feature-value combinations that are common across them.
These common subgroups are then used to find, from the
space of actions, a set of valid, effective actions that have the
same cost for the individuals on each subgroup. FACTS then
uses a set of measures to establish whether there is a bias
given the found CFs among the different sensitive groups.
AReS is similar to FACTS but it extracts both predicates
and actions from the training dataset. The recourse rules are
then selected using an optimization procedure that aims to
maximize the correctness (the fraction of instances for which
the recourse rules effectively create a CF), the coverage (the
amount of instances for which the “if” conditions apply) and
the interpretability (the amount of recourse rules, their length
and the number of subgroups). Particularly, these two methods
also allow the user to identify subgroups of interest inside the
sensitive groups (e.g. in the females sensitive group, those
from the EU who are divorced) via the identified and stored
predicates for the CF rules. Kavouras et al. [7], and Rawal
and Lakkaraju [10] also discuss quality measures to assess
the group CFs and the algorithmic fairness based on the CFs.

There are many quality measures to assess CF explanations
[1], [4], [17]. These measures include proximity and likeli-
hood (how likely is the given CF regarding the dataset [13])
among others. Likewise, there are many algorithmic fairness
measures. These may benefit from CF reasoning. For example,
predictive equality (the false negative ratio of a sensitive
group), which assesses biases jointly using the prediction and
ground truth labels across groups, may miss the potential
bias detection capability through the CF recommendations
provided by the CFs [18]. Sharma et al. [5] propose CF burden
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as a fairness proxy, while Kuratomi et al. [6] weighted the
sensitive group burden with its predictive equality, combining
accuracy-based and CF fairness. Group CFs quality may also
be measured through effectiveness [7].

III. PRELIMINARIES

Let X be a heterogeneous feature space with binary, cat-
egorical, ordinal, and continuous features. A dataset D is a
collection of n pairs of (X, y) where X is a data sample (i.e.,
instantiation) of X and y is its corresponding binary class label
y ∈ {“− ”, “+ ”}. D is divided into a training and a test set,
denoted as DTrain and DTest, respectively.

Moreover, let S ⊆ X be a set of sensitive features in X ,
such as sex or race. Each sensitive feature s ∈ S may be
used to define different sensitive groups of data samples. A
sensitive group of feature s is denoted as sk, where k defines
a condition on that feature, which is denoted by function
cond(·). If s satisfies condition k then cond(s,k) == ‘true’.
For example, sensitive feature sex may be used to define
two sensitive groups, i.e., sfemale and smale, corresponding
to data samples for which sex==‘female’ and sex==‘male’,
respectively. Given a classifier f(·), we define the set of false-
negative test instances in sensitive group sk as:

Dsk
TestFN = {(X, “+”)|f(X) = “−”, cond(s, k), X ∈ DTest}

Additionally, we introduce the property of feasibility. A CF is
feasible with respect to an instance of interest if it complies
with the properties of mutability, directionality, and plausi-
bility. A CF complies with the mutability property if only
mutable features are changed from its corresponding instance
in DTestFN . In the same manner, it complies with directional-
ity if the features are changed only in possible directions, e.g.,
age or education cannot decrease. Finally, plausibility indicates
that the CF feature values have all physically possible values.

For each instance Xi ∈ Dsk
TestFN we use a CF generator to

get its CF, X ′
i . Let us now define the set of possible CFs for the

instances in DTestFN as Q and the function F (DTestFN ,Q)
as an indicator of the instances in Q that comply with the
feasibility condition with respect to the instances in DTestFN .
We now introduce the general problem formulation.

Problem 1 (Bias detection, mitigation & Identification of
relevant subgroups): Given a classifier f(·) and the set of false-
negative test instances DTestFN =

⋃
sk
Dsk

TestFN , we want to
obtain the set of CFs D′ as follows:

D′ = argmin
Q
{w1Cburden(Q) + w2Cfair(Q)+

w3Cgroups(Q) | F (DTestFN ,Q)},
(1)

where w1, w2 and w3 are the weights for the costs associ-
ated to: (1) the aggregated CFs burden (Cburden), (2) bias
mitigation or fairness (Cfair) and (3) the number of relevant
subgroups identified (Cgroups), respectively.

The formulation in problem 1 enables a flexible cost func-
tion definition to allow for the extraction of CFs that optimize
different objectives. When prioritizing Cburden, burden is
minimized, and when aggregated by sensitive groups, this

measure elicits the biases among sensitive groups, indicating
which groups require a higher effort to achieve the desired
label. When prioritizing Cfair, the differences in burden
across sensitive groups is reduced. This provides fair CF
recommendations across different groups, since these would
have similar application difficulty, as measured by burden.
When prioritizing Cgroups, a set of CFs that is minimal in
size is obtained, which forces the CFs to be shared among the
instances of interest, i.e., each of the false negative instances
will be subgrouped together with other instances, based on the
shared CF, generating group CFs and identifying subgroups
of interest simultaneously. We now explain CounterFair, the
instantiation of the cost functions, Cburden, Cfair and Cgroups

used, and how CounterFair solves problem 1.

IV. COUNTERFAIR

CounterFair is an MP-based algorithm that attains feasible
and optimal group CFs in terms of a given cost function.
This cost function is adaptable and can be defined in different
ways. In our case, we define so that burden (leading to bias
detection), burden differences (leading to bias mitigation) or
the number of different CFs (indetifying relevant subgroups)
are minimized. We first provide an outline of the main steps
of CounterFair, the instantiation of the cost function for
CounterFair, and finally its MP formulation.

A. Outline

CounterFair creates a set of points from which it selects an
optimal set of CFs given a cost function, following four steps:
(1) obtain the sets of false-negative test instances Dsk

TestFN

and true-positive training instances Dsk
TrainTP per sensitive

group; (2) obtain the nearest neighbor training CF for each
instance in Dsk

TestFN from the instances in Dsk
TrainTP , which

are then stored in set CFsk
Train; (3) find all the combinations

of the feature values between each X ∈ Dsk
TestFN and every

CF in CFsk
Train to generate a cloud of points, P , which are

the potential CFs; (4) solve the MP to select the best CFs
simultaneously for every X ∈ Dsk

TestFN using P .
The steps of CounterFair are detailed in Alg. 1 and depicted

in Fig. 2. In step 1 (Fig. 2a), a ML model separates the
undesired class (orange-shaded region) from the desired class
(blue-shaded region). The orange points in the undesired
region represent the false-negatives. Each sensitive group s1,
s2, and s3 is outlined in yellow, orange and red, respectively.

In step 2, for each X ∈ Dsk
TestFN , the Nearest Neighbor

(NN) is used to find the closest training CF observation from
Dsk

TrainTP (blue-colored points in Fig. 2b) and store it in
CF sk

Train. The set CF sk
Train is filtered using: (1) the closest

percentage Ω of CFs from the centroid of the set of false-
negatives instances of each sk, and (2) a critical distance d
to the false-negative instances. The Ω value depends on the
dataset but is usually 100% (see Appendix A), i.e., all the
training CFs in CF sk

Train are considered. The distance d is the
maximum of the distance averages of each sensitive group.

In step 3 (Fig. 2c), the cloud of blue points P is generated
using all the possible combinations of the feature values
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(a) Step 1: Identify the testing false-
negatives Dsk

TestFN .
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𝑠ଵ

𝑠ଷ

(b) Step 2: Locate the closest train-
ing CF observations X

sk
TrainTP.

𝑠ଶ

𝑠ଵ

𝑠ଷ

(c) Step 3: Permute feature values
among Dsk

TestFN and X
sk
TrainTP.

𝑠ଶ

𝑠ଵ

𝑠ଷ

(d) Step 4.1: Solve the MP with a
higher weight on CFs burden.

ଶ

ଵ

ଷ

(e) Step 4.2: Solve the MP mini-
mizing burden variance.

𝑠ଶ

𝑠ଵ

𝑠ଷ

(f) Step 4.3: Solve the MP with a
higher weight on group formation.

Fig. 2: 2-dimensional example of CounterFair. Steps 2d, 2e and 2f are obtained by prioritizing Cburden (minimizing burden),
Cfair (minimizing burden differences) and Cgroups (minimizing the set of CFs), respectively.

Algorithm 1: CounterFair

input : D, f , s, m⃗ut (mutability vector), d⃗ir
(directionality vector), p⃗la (plausibility
vector), Ω (closest training percentage).

output: CFCounterFair

1 Dsk
TestFN ,Dsk

TrainTP ← TestFNTrainTP(D, f, s)
2 CF sk

Train ← NN(Dsk
TestFN ,Dsk

TrainTP ,Ω)
3 P, CXin, FXin ←

points(Dsk
TestFN , CF sk

Train, f, m⃗ut, d⃗ir, p⃗la)
4 CFXin

CounterFair ← solveMP(P, CXin, FXin)
5 return CFCounterFair

between each Xi ∈ Dsk
TestFN and the CF observations in

CFsk
Train. All the continuous features are discretized using

an equal frequency binning (details of this discretization are
shown in Appendix A). The generated points are stored in P ,
if they: (1) are feasible CFs with respect to the instance from
which they are generated, (2) lie inside the critical distance d
with respect to this instance. Finally, for each Xi ∈ Dsk

TestFN

and n ∈ P , two parameters are calculated: (1) a cost parameter
CXin, representing the cost of using point n as the CF for Xi

and (2) a feasibility parameter FXin indicating whether point
n is a feasible CF for Xi.

In step 4, the MP is solved in three separate ways, shown
in Figures 2d, 2e and 2f, by: (1) minimizing the aggregated
burden, (2) minimizing the burden differences and (3) mini-
mizing the number of distinct CFs. Fig. 2d illustrates 15 unique
CFs, outlined in green, presenting the lowest sensitive group-
aggregated burden (the length of the arrows is minimized). Fig.
2e shows CFs having similar distances from their respective
instances of interest, minimizing the burden differences among
sensitive groups (the difference in length of the arrows is
minimized). In Fig. 2f there are six distinct, shared CFs. There
are two unique subgroups per sensitive group (enclosed in the
dashed lines), which are the relevant subgroups.

B. Cost function instantiation

To solve problem 1, we instantiate the cost functions
Cburden, Cfair and Cgroups and describe the MP formulation.

a) Cburden: In order to define Cburden, we hereby in-
troduce the measure of accuracy weighted burden (AWB).
Accuracy Weighted Burden: the AWB measure, introduced in
[6], is the product of predictive equality (the false negative
ratio) and the average burden per sensitive group. The AWB
measure uses a distance function d(Xi, X

′
i). This distance is

the burden incurred by instance Xi in trying to attain the
feature values of X ′

i , and it is a combination of the L1-norm
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and the L0-norm (see details in Appendix C). Eq. 2 indicates
how to calculate the AWB measure.

AWBsk =

∑
Xi∈Dsk

TestFN

d(Xi, X
′
i)

|{(X, y) ∈ DTest|cond(s, k), y = “ + ”}|
, (2)

where the denominator is the amount of true positives in the
sensitive group sk. Eq. 2 indicates that a higher number of
false negatives, or a higher distance between each instance
and its CF in the sk sensitive group, make the AWBsk burden
higher. Then, we define Cburden as the total AWB:

Cburden =
∑
sk

AWBsk (3)

b) Cfair: We may define the cost associated to the
presence of biases by estimating the differences of the burden
among the sensitive groups. To do this, we define AWBmin =
minAWBsk and AWBmax = maxAWBsk as the minimum
and maximum burden, respectively. Cfair is then defined as
the absolute difference between these two terms:

Cfair = AWBmax −AWBmin (4)

c) Cgroups: To define the cost associated to the number
of distinct CFs, we define a variable and a set: ln,∀n ∈ P
as a variable that indicates whether a point n ∈ P is
selected as a CF for any of the instances Xi ∈ DTestFN and
I = DTestFN =

⋃
sk
Dsk

TestFN as the set of all false-negative
instances. Therefore, the cost Cgroups is defined as:

Cgroups =

∑
n∈P

ln

|I|
(5)

In the worst case scenario, every instance Xi ∈ I will
have its own unique CF, making the cost Cgroups = 1. We
now continue with the MP formulation of the CounterFair
algorithm and show how it solves problem 1.

C. CounterFair MP Formulation

To solve problem 1, we split the implementation of Counter-
Fair into two: one main implementation focusing on minimiz-
ing Cburden and Cgroups, and another focusing on minimizing
Cfair, the latter requiring additional variables and constraints
over the main implementation. In the main implementation,
the MP uses only integer decision variables, making the MP
an integer program. In the second implementation, a set of
continuous decision variables must be added to the main
implementation, which makes the MP a mixed integer linear
program. We proceed to present the main formulation and then
describe the added variables and constraints for the second.

We define the set of binary decision variables pXin,∀Xi ∈
I, n ∈ P . These variables indicate whether the point n
is selected as a CF for the instance Xi. In order to relate
the Cburden cost with the decision variable, we introduce the
parameter AWBsk

Xin
, which is the added burden when selecting

point n for the instance Xi as a CF, i.e. when pXin = 1:

AWBsk
Xin

=
d(Xi, n)

|{(X, y) ∈ DTest|cond(s, k), y = “ + ”}|
, (6)

for all Xi ∈ I and for all n ∈ P . Then, multiplying
AWBsk

Xin
with the decision variable pXin:

AWBsk =
∑
Xi∈I

∑
n∈P

AWBsk
Xin
· pXin, (7)

and then Cburden can be rewritten as:

Cburden =
∑
sk

AWBsk =
∑
sk

∑
Xi∈I

∑
n∈P

AWBsk
Xin
· pXin (8)

For the Cgroups term, we use the binary decision variables
ln,∀n ∈ P , and the Cgroups cost remains as defined in 5. We
define the objective function for the main implementation as:

Z1 = αCburden + (1− α)Cgroups, (9)

where the weight α ∈ [0, 1]. When weight α ≈ 0, Cgroups

is prioritized and the number of distinct CFs will be mini-
mized. This will force the sharing of CFs among similarly-
distanced instances, automatically identifying relevant sub-
groups via these shared CFs. Equivalently, when α ≈ 1, the
total aggregated burden will be minimized, optimizing the
recommendations found for each instance. In this scenario, the
models biases will be observed as a higher relative aggregated
burden for some of the sensitive groups. We now define the
block R of constraints as follows:
R:

pXin ≤ FXin, ∀i ∈ I, n ∈ P, (10)∑
n∈P

pXin = 1,∀Xi ∈ I, (11)

pXin ≤ ln ∀Xi ∈ I,∀n ∈ P, (12)
pXin, ln ∈ {0, 1} ∀Xi ∈ I,∀n ∈ P, (13)

Constraint (10) guarantees that the selected points n are
feasible for their instances Xi, while constraint (11) forces the
selection of a single point n per instance Xi. Finally, constraint
(12) requires all pXin variables to be less than or equal to the
limiter ln, with constraints (13) forcing pXin and ln to be
binary. Finally, the main MP formulation is:

minZ1, subject to R (14)

We now describe the second implementation, which aims at
mitigating the biases among sensitive groups. To do this, we
take the previously defined variables: AWBmax and AWBmin,
and add them as continuous decision variables. Then we add
the following set of constraints to the block R:

AWBmin ≤
∑
Xi∈I

∑
n∈P

AWBsk
Xin
· pXin ≤ AWBmax,∀sk,

(15)
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which bounds the aggregated burden per sensitive feature.
Then, we define the cost function as:

Z2 = AWBmax −AWBmin, (16)

which matches Eq. 4. When minimizing Z2 the difference
between the maximum and minimum burden is reduced down
to zero. Given that AWBmax and AWBmin work as bounds
on the burden, it then forces the selection of CFs that have
equal burden across sensitive groups and thereby effectively
decreasing the biases obtained from the recommendations.

By now, it is possible to conceive other cost functions
and potential adaptations to the algorithm to achieve other
objectives through the CounterFair MP formulation. Besides
the objectives of bias detection, mitigation and subgroup
identification, we consider CF effectiveness as a measure to
optimize for in group CF generation. We now continue with
the formulation to maximize group CF effectivenes.

As previously mentioned, CF effectiveness is the ratio of
total instances that have a feasible CF. We define parameter
en,∀n ∈ P , as the effectiveness associated to point n with
respect to the instances of interest:

en =

∑
Xi∈I

F (Xi, n)

|I|
,∀n ∈ P, (17)

where F (Xi, n) is the feasibility indicator function between
the instance Xi and the point n. This parameter, which can
be estimated for every point n ∈ P , indicates the ratio of the
instances in the set of false-negatives that can reach the n CF
point. Then, the cost function associated to effectiveness in
the MP is defined as:

Z3 = Ceff = −
∑
Xi∈I

∑
n∈P

en · pXin. (18)

We now proceed to discuss the complexity of CounterFair.
Complexity: The most complex step of the CounterFair al-
gorithm is step 4: the solution of the MP. In general, an
integer program formulation, which is harder to solve than
a mixed integer linear program formulation, is classified as a
NP-complete problem [19]–[21] with a complexity determined
by the number of rows (constraints) and columns (variables).
Based on the block R of constraints, the number of constraints
is 3(|I| · |P|) + |I| + |P|, whilst the number of variables, v,
is |I| · |P| + |P|. The solution is usually obtained through
a branch-and-bound approach, which requires the solution
of a relaxed linear program at every node of the branch-
and-bound tree. Each linear program solution is estimated to
have a complexity of O(v2.5) [22]. The minimum number
of nodes in a branch-and-bound tree is determined by 2⌊

v
2c ⌋,

where c is the maximum number of variables in any given
constraint [23]. In this case, since c = |P| (see constraint 11)
then 2⌊

v
2c ⌋ = 2⌊

|I|·|P|+|P|
2|P| ⌋ = 2⌊

|I|+1
2 ⌋. Therefore, the total

complexity of CounterFair is O(2⌊
|I|+1

2 ⌋(|I| · |P|+ |P|)2.5).

V. EMPIRICAL EVALUATION

In this section, we illustrate the experimental setup by
describing the CF evaluation measures, the datasets and the
classification performance achieved. We then evaluate Coun-
terFair and compare it with AReS [10] and FACTS [7].

A. Experimental Setup

We compare the aggregated AWB values of the sensitive
groups using Eq. 7 and the number of subgroups obtained
by summing the limiter variable ln for each of the sensitive
groups. We define the set of points in the cloud of points P that
belong to sensitive group sk as Psk . Then, we define Lsk =∑
n∈Psk

ln as the number of distinct points selected as CFs for

sk. We calculate the effectiveness of the CFs per sensitive
group, which is defined as Esk =

|{Xi∈Dsk
TestFN |F (Xi,X

′
i)}|

|{Xi∈Dsk
TestFN}| .

Moreover, we used six binary classification datasets. These
datasets cover different application domains and sensitive
groups, focusing mainly on gender, age, and race [24]. All
datasets have been preprocessed and stored in our GitHub
repository3. The preprocessing is based on Karimi et al. [2]
and Le Quy et al. [24]. Further details about the CounterFair
parameters and the features for each dataset may be found in
Appendix A and the repository.

Additionally, we trained a Random Forest (RF) and a Multi-
Layer Perceptron (MLP) classifier and tuned their parameters
using a 70%/30% train/test split and a grid search tuning on the
training set. We used the F1 score as our classification metric.
Details on performance, computing unit used and structure of
the classifiers are provided in Appendix B and the repository.

Finally, we benchmark CounterFair on three scenarios, one
for each of the described cost functions in IV-C: (1) with cost
function Z1 and three different values of α: α = [0.1, 0.5, 1.0]
for all datasets. and obtain the AWBsk and Lsk scores for
each sensitive group sk; (2) with cost function Z2, to reduce
the biases based on the aggregated burden; (3) with cost
function Z3 to showcase the adaptability of CounterFair and
its performance when optimizing for effectiveness, as a group
CF measure that has been previously prioritized by other
methods. We compare the performance in terms of burden
and effectiveness with AReS and FACTS.

B. Results

We present here the results of the experiments carried out
with respect to 5 elements: (1) burden minimization for bias
detection, (2) minimization of burden differences among sen-
sitive groups for bias mitigation and fair recommendations, (3)
impact of minimizing differences of burden and differences of
distance on the group CF recommendations, (4) minimization
of distinct CFs for relevant subgroup identification and (5)
comparison of CounterFair with AReS and FACTS in burden,
effectiveness and run times.

3https://github.com/alku7660/CounterFair
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1) Burden minimization: in the first experiment, we ran
CounterFair to minimize cost function Z1 with α =
[0.1, 0.5, 1.0], i.e., starting with a low weight of 0.1 for the
Cburden cost and a high weight of 0.9 for the Cgroups cost,
and ending with a high weight of 1.0 for Cburden and 0.0
for Cgroups. Fig. 3 shows the aggregated burden per sensitive
group as the bars when α increases for each dataset. The
burden decreases as α increases for all the datasets, and shows
the differences in burden among different sensitive groups.

The differences in burden across sensitive groups is best
evidenced when using the highest α = 1.0 because the
nearest and easiest CF is selected for each instance. Since
the aggregated burden for each sensitive group is calculated
through Eq. 7, a higher number of false-negative instances
(the number in parenthesis in the legend of each plot) would
normally portray a higher burden for a given group. However,
this is not always the case. For example, prioritizing AWB
(α = 1.0) in the German dataset does not show the same
relative AWB behavior among genders as in the other two
values for α and, even though there are less than half as many
females as males, females present a higher AWB.

2) Minimization of burden differences among sensitive
groups: in this experiment we ran CounterFair to minimize
cost function Z2, i.e., the differences in burden among the CFs.
Fig. 3 shows the result of this experiment in the last set of bars
on each plot, over the Fair x-axis label. Note that the obtained
CFs show an equal burden as measured by AWBsk among the
sensitive groups for each dataset, effectively eliminating the
biases in burden and producing group CF recommendations
that are fair across these groups.

3) Impact of minimizing the differences of burden among
groups (AWBsk ): we illustrate the impact of the minimization
of burden differences in the CounterFair CF recommendations
for the false-negative instances in the German dataset and
compare it to the minimization of distance differences, i.e., not
considering the false negative ratio of the model. We randomly
pick a male and a female from the DTestFN set. We then run
CounterFair on this dataset minimizing instead the differences
in distance cost

∑
DTestFN

d(Xi, X
′
i) and extract the CFs for

the selected male and female. The CFs (minimizing AWB
differences and distance differences) are shown on table I.
In the CFs minimizing AWB differences, the credit change
is larger for the female than for the male, compensating
for the higher amount of false-negative males (there are 8
false-negative females and 28 false-negative males). When
minimizing for distance differences, there is no consideration
of the false negative ratio, so there is no compensation for
the bias in accuracy, and the credit change is smaller for the
females, although the rate also decreased.

We highlight the importance of having both the bias
detection-oriented CF generation first, as this would allow
the users to detect potential sensitive feature biases present in
the trained model, and then, if required, generate fair CFs by
minimizing the burden in deployed models. This is important,
since only running CounterFair for bias mitigation (although

beneficial for the fairness in the recommendations to users)
might hide the models algorithmic biases. We recommend
using CounterFair in the following manner: first identify the
biases and then obtain the bias-mitigating CFs if needed, so
that the recommendations are fair across groups.

4) Minimization of distinct CFs: We now show the struc-
ture of the relevant subgroups identified when minimizing cost
function Z1 with α = 0.1. Fig. 4 illustrates the number of
relevant CFs and subgroups found for each sensitive group
with the diamonds plotted using the secondary y-axis. Note
that, as burden is increasingly prioritized, the number of
subgroups increases. Fig. 4 shows the details of the seven
relevant subgroups identified in the Compas dataset. The red
subgroup shows caucasian males with at least a felony and 15
priors, older than 45. The other subgroups are characterized by
priors around 6, ages between 25 and 45. These are obtained
by aggregating the instances that share the same group CF, as
output by CounterFair. In the case of the Compas dataset, the
identified subgroups may provide further data to analyse the
people that are being misclassified as recidivists and why. For
example, in the case of the red group (caucasian males with a
felony, almost 15 priors, older than 45), only 22 false-negative
instances were found, while for the dark green (caucasian
males with a felony, around 6 priors, between 25-45 years
of age) there were 210, indicating an almost 10 times larger
false negative ratio for the latter. This is interesting, since there
are more false negatives in the younger age group, even as
there are less prior counts of crimes committed, indicating
that the model might have an age bias. The remaining datasets
identified subgroup detail plots are uploaded in the repository.

5) Comparison of CounterFair with AReS and FACTS with
respect to burden, effectiveness and run time: we ran the
experiments of AReS and FACTS with two considerations:
(1) following the authors recommended support threshold of
1% [7], [10] and (2) limiting the execution time to maximum
1 week per dataset. However, the threshold had to be modified
to run within the time limit, but at most to 10% (beyond
this point, the performance significantly degrades). Fig. 5
shows the AWB, effectiveness and run times of CounterFair,
AReS and FACTS. CounterFair mostly outperforms AReS and
FACTS in burden and effectiveness. AReS and FACTS beat
CounterFair in AWB in the Dutch dataset Females (FACTS
beats it on Males and Females). AReS also beats CounterFair
in Males and Females in AWB in the Athlete dataset. Coun-
terFair significantly beats them in effectiveness in all cases.
For AReS this can be explained by the lack of feasibility
constraints on the CFs, leading sometimes to infeasible CFs.
Timewise, AReS is the fastest, and CounterFair is at least 10
times faster than FACTS except in the Dutch dataset (ran with
10%). We excluded Adult and Student since the recommended
threshold of 1% overshot the run time beyond the week, or it
had to be raised beyond 10%, hindering the performance.

VI. CONCLUSIONS

We propose CounterFair, an MP-based, model-agnostic CF
generation algorithm that can detect biases, mitigate them,
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Sex Single Unemployment Purpose Rate Housing Age Credit Duration
X1 Male No No Electronics 3 Rent 22 1331 1.2
X1

′AWB
Fair Male No No Electronics 3 Rent 22 1845 4.5

X1
′dist.
Fair Male No No Electronics 3 Rent 22 1871 4.5

X2 Female No No Car 4 Owns 34 1842 3.6
X2

′AWB
Fair Female No No Car 4 Owns 34 866 15

X2
′dist.
Fair Female No No Car 1 Owns 34 1490 15

TABLE I: Instances and their CFs obtained through CounterFair when mitigating biases across sensitive groups in the German
dataset. The recommended changes are larger for the female since the model is biased in accuracy favoring females.

= 0.1 = 0.5 = 1.0 Fair
0.0

0.1

0.2

Bu
rd

en
 (A

W
B

s k
)

Sex

Male (965) Female (398)

0

50

100

150

Su
bg

ro
up

s (
Ls k

)

(a) Dutch dataset

= 0.1 = 0.5 = 1.0 Fair
0.0

0.2

0.4

Bu
rd

en
 (A

W
B

s k
)

Sex

Male (28) Female (8)

0

10

20

30

Su
bg

ro
up

s (
Ls k

)

(b) German dataset

= 0.1 = 0.5 = 1.0 Fair
0.0

0.2

0.4

Bu
rd

en
 (A

W
B

s k
)

Sex

Male (21) Female (26)

0

10

20

Su
bg

ro
up

s (
Ls k

)

(c) Athlete dataset

= 0.1 = 0.5 = 1.0 Fair
0.0

0.5

1.0

1.5

2.0

Bu
rd

en
 (A

W
B

s k
)

AgeGroup

<18 (8) >=18 (12)

= 0.1 = 0.5 = 1.0 Fair

Sex

Male (5) Female (15)

2.5

5.0

7.5

10.0

12.5

5

10

15

Su
bg

ro
up

s (
Ls k

)

(d) Student dataset
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Fig. 3: Aggregated burden, identified subgroups and fair CFs burden output. Each plot has four points in the x-axis: three for
the α values of 0.1, 0.5 and 1.0 using cost function Z1, and one using cost function Z2. The bars show the burden (on the
left y-axis), while the diamonds the number of distinct subgroups for each sensitive group (on the right y-axis). The legends
indicate the sensitive groups and their number of false-negatives in parenthesis.

and identify relevant subgroups in the data, all via group CF
generation. The generation of group CFs requires only the
input of the feature properties of mutability, directionality and
possible values. CounterFair is, as demonstrated, adaptable to
generate CFs based on different cost functions thanks to its
flexibility in cost and constraints definitions. An example is
analyzed with group effectiveness, and it is the only group
CF generation method, to the best of our knowledge, that is
also able to reduce the burden biases among sensitive groups

by selecting CFs that decrease the difference in aggregated
burden among them. From a holistic perspective, having a
tool that is not only able to detect biases, but also extract fair
recommendations based on the trained ML models is useful
for scientists and developers but also useful for users who are
looking to find ways to improve their condition without them
turning to be unfair with their peers. As part of future work,
other cost functions could be formulated based on the literature
on CF explanations quality measures, such as likelihood or
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Fig. 4: Compas dataset subgroup details with α = 0.1. The
shaded regions have a width equal to one standard deviation
of the features values of each subgroup.

sparsity, as well as the usage of other commonly used fairness
measures. Additionally, the introduction of intersectional fair-
ness: the study of fairness across the specific found subgroups
of interest, is a natural step forward. Moreover, the inclusion
of the classifiers as nonlinear constraints in the mathematical
programming formulations could be researched. Finally, the
consideration of non-binary datasets, which should be easy to
tackle using, for example, a one-versus-the-rest approach, is
also a logical progression, while the scalability and complexity
is a good topic to focus on.
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APPENDIX

A. Datasets

The datasets and their description may be found at the
UCI Machine Learning repository4 unless a different URL is
specified. Additionally, you may find them at the repo5.

The discretization of continuous features is done as follows:
for each continuous feature the values found in the training set
are used as steps. If there are more than 10 values between the
values of the instance and the CF, then a normal distribution
with the mean and standard deviation of the continuous feature
in the training set is estimated and the bins are defined
as having each 10% of this distribution, providing equal
frequency of points in each bin. The values of the closest
training percentage, Ω and the number of bins used for the
discretization of continuous features are specified in Table II.

4https://archive.ics.uci.edu/ml/index.php
5https://github.com/alku7660/CounterFair
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Fig. 5: CounterFair, AReS and FACTS performance. Lower AWB, higher effectiveness and lower times are better. CounterFair
is run with Z1 and alpha = 1.0 for AWB, and with Z3 for effectiveness.

The properties of mutability and directionality for each of
the datasets can be found at the repo.

B. Classifiers
The classifiers performance is shown in Table III.

C. Distance function
The distance function used is:

d(Xi, X
′
i) =

ord+ con

w
l1(Xi, X

′
i)+

bin+ cat

w
match(Xi, X

′
i),

(19)
where bin, cat, ord and con are the binary, categorical,

ordinal and continuous features, respectively (w = bin+cat+
ord+ con). The match(a, b) function is a matching function
between categorical features (based on [2], [5]).

Adult Athlete Compas Dutch German Student
Ω 30% 100% 100% 30% 100% 100%

Bins 5 10 10 5 10 10

TABLE II: Closest training percentage and number of bins
used for the discretization of continuous features.

Dataset Model Hyperparameters F1-score

Adult RF depthmax = 10, leafminsize = 1,
splitminsize = 1, n = 100

0.83

Athlete MLP act. = tanh, layers = (20, 50, 10),
solver = sgd

0.71

Compas MLP act. = tanh, layers = (20, 10, 10),
solver = adam

0.68

Dutch RF depthmax = 10, leafminsize = 3,
splitminsize = 5, n = 50

0.84

German MLP act. = ReLU , layers = (100, 10),
solver = sgd

0.70

Student RF depthmax = 2, leafminsize = 5,
splitminsize = 2, n = 200

0.70

TABLE III: Selected classifiers and test performance.

1) Parameters: The support threshold of the frequent fea-
ture values per dataset are indicated in Table IV:

Athlete Compas Dutch German
AReS 1% 1% 1% 1%

FACTS 1% 1% 10% 1%

TABLE IV: Support threshold for AReS and FACTS.
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