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Abstract. Growing concerns about bias and discrimination in auto-
mated systems have spurred a surge of research in algorithmic fairness,
which aims to design algorithms with formal fairness guarantees. In this
work, we focus on fairness in community detection, the task of identi-
fying cohesive subsets of nodes (communities) that are sparsely inter-
connected. We assume that nodes are partitioned into groups, based on
a sensitive attribute (e.g., gender), and aim for balanced representation
of these groups within the detected communities. We propose a novel
fair community detection algorithm that builds on the popular Label
Propagation method. Our approach draws inspiration from principles in
physics to incorporate fairness into the label propagation process. We
present experiments on different real and synthetic datasets, where we
study the properties of our algorithm and compare with baselines.
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1 Introduction

The widespread use of Machine Learning and Data Science algorithms
has raised concerns about possible biases of these algorithms against
minorities and under-represented groups. Consequently, in recent years,
algorithmic fairness has emerged as a key area of research, aiming to de-
sign algorithms with formal fairness guarantees. In this work, we focus on
fairness for the problem of community detection in networks. At a high
level, community detection aims to partition the nodes of a graph into
subsets (communities ), such that nodes are densely connected within the
communities, while sparsely connected across communities [8]. Our ob-
jective is to design a community detection algorithm that produces fair
communities, where fairness is measured using the balance metric [5].
We assume that nodes are partitioned into groups, based on a sensitive
attribute (e.g., the gender of users in a social network), and we ask for
a balanced representation of the different groups in the output commu-
nities. Balance is a commonly used metric of fairness in clustering [4],
which has also been employed in community detection [11].
A popular community detection algorithm is the Label Propagation (LP)
algorithm [14], which finds communities by propagating labels along the
edges of the graph. In this paper, we propose a fair variant of the LP
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algorithm. We adopt a physics-inspired perspective on label propaga-
tion, modeling each neighbor as exerting a force that pulls the node to
its community. To incorporate fairness, we introduce the notion of an
electrostatic charge for a community, defined as the imbalance of the dif-
ferent groups in the community. We define an electrostatic force between
the community and the node, which is attractive or repelling, depend-
ing on whether the node improves the balance of the community. Our
algorithm combines both pulling and electrostatic forces to perform the
label propagation, providing a trade-off between community quality and
fairness.
In summary, in this paper, we make the following contributions:
• We propose a novel fair community detection algorithm that extends

the label propagation algorithm using physics-inspired principles.
• We experimentally assess the fairness–quality trade-off on real and

synthetic datasets, showing that our algorithm improves fairness
with minimal impact on community quality.

• We compare our algorithm to the fair spectral method (FSP) on real
and synthetic datasets, showing improved performance – especially
on “difficult” datasets.

2 Related Work

The problem of community detection is a special case of clustering for
graph data. There has been considerable amount of work on clustering
fairness [4]. The definition of fairness we use is that of balance, first
introduced in the seminal work about fairlets [5]. The work in [5] was
followed by several extensions and modifications [2,3,10] that consider
variants of the original problem.
There is limited amount of work on community detection fairness. The
work most related to ours is that in [11,17], where they define a fair spec-
tral algorithm that aims to achieve balanced communities. The objective
is similar to ours, but the technical approach is different. We compare
against this algorithm in our experiments.
In [9] they define a notion of edge fairness for communities, using the
modularity metric. The notion of diversity fairness that they define is
related to the notion of balance, but the two metrics are distinct. The
work in [1] considers the problem of fairness for the densest subgraph
problem, using a fairness metric similar to balance. The densest subgraph
problem is related to community detection, but has a different objective.

3 Preliminaries

In this section, we introduce the problem of community detection and
the Label Propagation algorithm, and the definition of balance.

Community Detection and the Label Propagation algorithm:
Given as input a network G = (V,E), the output of a community detec-
tion algorithm is a partition of the nodes into k disjoint subsets (com-
munities), C = {C1, C2, ..Ck}, Ci ⊆ V , Ci ∩ Cj = ∅, ∪k

i=1Ci = V . The
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number of communities k may be given as input, or it may be decided
by the algorithm. There is a variety of community detection algorithms
that use different criteria to produce communities [8].
The Label Propagation algorithm (LP), is a popular algorithm for com-
munity detection [14].The algorithm starts by assigning each node v a
unique label L(v), usually the id of the node. Then it iteratively up-
dates the label of each node, assigning the most frequent label in their
neighborhood. If there are ties, the label with the largest id is selected.
The algorithm terminates when no node changes label. A community
Cℓ = {v ∈ V : L(v) = ℓ} is the set of nodes with the same label ℓ.

Balance: To define fairness, we assume that the nodes of the graph are
associated with some sensitive attribute A, such as gender, religion or
race, that takes t values {a1, ..., at}, which partition the nodes of the
graph into t groups G = {G1, G2, .., Gt}, Gi = {v ∈ V : A(v) = ai}.
In the following, we will often refer to the attribute values, and the
corresponding groups, as colors.
The balance fairness metric was first defined in the work of Chierichetti
et al. [5] for fair clustering. The definition can be directly applied to
community detection, by simply substituting clusters with communities.
For the following, we will assume that we have two groups (colors) of
nodes. We will refer to them as the blue group Gb and the red group Gr.
For a community C, let Cb and Cr denote the subset of blue and red of
nodes in C respectively. We define the balance of community C as

bal(C) = min

{
|Cb|
|Cr| ,

|Cr|
|Cb|

}
∈ [0, 1] (1)

A perfectly balanced community has equal number of red and blue nodes,
resulting in a balance value of 1.
Given the definition of the balance of a community, the balance of a
collection of communities C = {C1, . . . , Ck} is defined as as the average
balance of the communities in C, that is, bal(C) = 1

|C|
∑

Ci∈C bal(Ci).

4 The Fair Label Propagation Algorithm

In this section, we present the Fair Label Propagation algorithm (FLP).
Our algorithm builds upon the vanilla LP algorithm described in Sec-
tion 3. For the definition of our algorithm, we take a physics-inspired
view of the LP algorithm. We assume that adjacent nodes (u, v) in the
graph pull each other with force Fp(u, v) = 1. In an iteration of the LP
algorithm, if Nℓ(v) is the set of neighbors of v with label ℓ, then the
community Cℓ pulls node v with force Fp(Cℓ, v) = |Nℓ(v)|. Node v is
assigned to the community Cℓ that pulls node v the strongest, that is,
the most popular community in the neighborhood of v.
To incorporate fairness (balance) in the LP algorithm, we introduce an
additional electrostatic force between connected nodes. We assign to each
node v a charge qv, whose magnitude depends on the imbalance of the
community node v belongs to. We define the imbalance of a community
C as imb(C) = 1− bal(C), and set |qv| = imb(C), for the nodes in C.
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The polarity of the charge depends on the majority color in the commu-
nity C. Without loss of generality, we assume that if the majority color
is red (|Cr| > |Cb|), then the charge is positive. In this case, we say
that community C is a red community. If the majority color in C is blue
( |Cb| > |Cr|, community C is a blue community), then the charge is
negative. Note that a single red node has charge +1, a single blue node
has charge −1, while a balanced community has charge 0.
The electrostatic force between two charged objects with charges q1 and
q2 at distance d, is governed by Coulomb’s law and it has magnitude
|Fe(q1, q2)| = Kc

|q1||q2|
d2

. The force is attractive if the charges have oppo-
site sign, and repellent if the signs are the same. In our case, we assume
that two connected nodes (u, v) exert electrostatic force to each other.
The force is directionless, so we only care about the sign and the mag-
nitude of the force. We assume that the nodes are at distance 1, and we
set Kc = 1. Therefore, we have: Fe(u, v) = −quqv.
When considering the label assignment of a node v, the FLP algorithm,
computes the electrostatic force that the neighbors of v in the community
Cℓ exert to the node. The charge of the node v has magnitude |qv| = 1,
while the charge of a neighbor u in the Cℓ community has magnitude
|qu| = imb(Cℓ). Summing over Nℓ(v), the neighbors of v in Cℓ, the
electrostatic force of community Cℓ to node v is:

Fe(Cℓ, v) = sign(v, Cℓ)|Nℓ(v)|imb(Cℓ),

where sign(v, Cℓ) = +1 if v and Cℓ are of the same color, and sign(v, Cℓ) =
−1 if they have different color.
The electrostatic force captures the effect of node v on the balance of the
community Cℓ. An attractive (positive) force means that the community
Cℓ has a surplus of the opposite color of v, and adding v to the community
will improve its balance. A repellent (negative) force means that the
community has a surplus of the color of v, and adding v to the community
will further increase the imbalance of the community. The strongest the
force, the more unbalanced the community (positively or negatively).
The FLP algorithm computes the total force F (Cℓ, v) that the commu-
nity Cℓ exerts on node v, by combining the pulling and electrostatic
forces, that is:

F (Cℓ, v) = (1− λ)Fp(Cℓ, v) + λFe(Cℓ, v),

where λ is a parameter of the algorithm. By combining the two forces,
the algorithm aims to combine two objectives: The quality of the output
communities, which is achieved by the pulling force, as in the vanilla LP
algorithm, and the fairness of the output communities, which is achieved
by the electrostatic force. The parameter λ controls the tradeoff between
community quality and fairness. Higher values of λ place more emphasis
on fairness. The value λ = 0 corresponds to the vanilla LP algorithm,
while the case λ = 1 puts all the emphasis on fairness.
Putting everything together, the FLP algorithm operates exactly as the
vanilla LP algorithm, iteratively updating the labels of the nodes, each
time assigning a node v to the community Cℓ that exerts the strongest
force F (Cℓ, v). The outline of the algorithm is shown in Algorithm 1. The
algorithm complexity remains O(Im), with m edges, and I iterations.
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Algorithm 1 Fair Label Propagation (FLP)

Require: Graph G = (V,E), group partition {Gb, Gr}, parameter λ.
1: Assign a unique label L(v) = v to every node v ∈ V .
2: repeat
3: for all v ∈ V do
4: for all labels ℓ do
5: Nℓ(v) = {u ∈ N(v) : L(u) = ℓ}
6: Fp(Cℓ, v) = |Nℓ(v)|; Fe(Cℓ, v) = sign(v, Cℓ)|Nℓ(v)|imb(Cℓ)
7: F (Cℓ, v) = (1− λ)Fp(Cℓ, v) + λFe(Cℓ, v)
8: end for
9: L(v) = argmaxℓ F (Cℓ, v)
10: end for
11: until No label change

5 Experiments

The goal of the experiments is two-fold: Explore the fairness–quality
trade-off, by varying the parameter λ of the FLP algorithm; Compare
against baselines and assess how dataset characteristics affect perfor-
mance in terms of fairness and clustering quality.

5.1 Experimental Setup

Datasets: In our experiments, we use both real and synthetic datasets.
We use the following real datasets:
• Twitter [15]: A collection of Twitter users, and their retweet actions.
• Facebook [12]: The mutual friendships between a collection of Face-

book users, extracted from their ego networks.
• Deezer [16]: The mutual follow relationships between a collection of

users on Deezer, an online music platform.
• DrugNet [18]: The acquaintance relationships between a collection

of drug users in Hartford.
• Friendship [13]: The mutual friendships between students in a high

school in Marseilles, France.
The sensitive attribute is the political affiliation, for the Twitter network,
and the gender, for all other datasets. The characteristics of the datasets,
and the balance, bal(G), of the whole network are shown in Table 1.
We also use synthetic datasets, generated by a variant of the stochastic
block model, defined in [11]. The model assumes that the nodes are
partitioned into k planted clusters, T = {T1, ..., Tk}, and two groups
G = {Gr, Gb}. The model is defined by four parameters: a, b, c, and d
that determine the probability Pr(u, v) of an edge between two nodes u, v,
depending on the group and cluster membership. Specifically: Pr(u, v) =
a, if u, v belong to the same cluster, and the same group; Pr(u, v) = b, if
u, v belong to different clusters, but the same group; Pr(u, v) = c, if u, v
belong to the same cluster, but in different groups; Pr(u, v) = c, if u, v
belong to the different clusters, and different groups.
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Table 1: Real Dataset Characteristics

Dataset Nodes Edges Groups bal(G)

Twitter 18,470 48,053 affiliation 0.63
Facebook 4,039 88,234 gender 0.61
Deezer 28,281 92,752 gender 0.80
DrugNet 185 265 gender 0.27
Friendship 127 396 gender 0.67

We have a > b > c > d. The datasets are constructed so that traditional
algorithms tend to produce monochromatic communities, by separating
nodes from different groups. The goal is to study if fair community de-
tection algorithms can generate fair (balanced) communities, ideally by
recovering the planted clusters.

Algorithms: In our implementation of the FLP algorithm, we per-
form semi-synchronous updates of the node labels, adopting the update
scheme in [7]. We also perform random permutations of the initial labels
of the nodes, to deal with the randomness in the node ordering. We im-
plemented FLP by adapting the open-source implementation provided
by the NetworkX library.1 Our code is publicly available.2

We compare the FLP algorithm against the Fair Spectral algorithm
(FSP) introduced in [11]. The algorithm incorporates the fairness con-
straints in the Laplacian matrix. It computes the eigenvectors of the k
smallest eigenvalues, and performs k-means clustering on the resulting
vectors. In our implementation we use the scalable variant of the algo-
rithm [17], and we employ k-means++ for the clustering step.

Fairness and Quality metrics: We evaluate the output communities
in terms of both fairness and quality. Fairness is measured using the bal-
ance metric defined in Equation 1. The quality of the communities is
measured using modularity [6]. Modularity is a popular measure of com-
munity quality, that measures the divergence between the actual and the
expected number of intra-community edges, if edges were generated at
random such that the expected node degrees are preserved. Specifically,
the modularity Q(C) of a community C is:

Q(C) =
1

2m

( ∑
u,v∈C

Auv − |N(u)||N(v)|
2m

)
,

where A is the adjacency matrix of G, m the number of edges in G, and
|N(u)|, |N(v)| the degrees of node u and v respectively. The higher the
modularity, the more cohesive the community. The modularity of a col-
lection of communities is the sum of the modularities of the communities.
Note that the modularity of the whole graph is zero.

1 https://networkx.org/documentation/stable/_modules/networkx/algorithms/

community/label_propagation.html
2 https://github.com/elidek-themis/flp

https://networkx.org/documentation/stable/_modules/networkx/algorithms/community/label_propagation.html
https://networkx.org/documentation/stable/_modules/networkx/algorithms/community/label_propagation.html
https://github.com/elidek-themis/flp
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5.2 Experimental results

Fairness-Quality trade-off: We first study the effect of the parameter
λ on the performance of our algorithm. The parameter λ controls the
contribution of the electrostatic force in the label assignment, and the
influence of the fairness criterion on the community formation process.
The values of λ between 0 and 1 implement a trade-off between finding
well-connected communities, and achieving fairness.
To study the effect of λ, we use synthetic datasets, for which we have
control over the dataset characteristics. We set the parameter values as
follows: a = 0.1, b = 0.01, c = 0.001, and d = 0.0001. The number
of groups is 2 (red/blue), and for the number of clusters we use the
values k ∈ {2, 3, 4, 5}. Each cluster has 400 nodes, 200 of which are red
and 200 are blue. The parameter λ takes values from 0 to 1, in steps
of 0.1. We measure fairness, quality, and the number of clusters. Our
measurements are averages over 10 different datasets, and 10 different
label permutations per dataset.
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Fig. 1: Fairness-Quality trade-off

Figure 1 shows our results. We observe that the vanilla LP algorithm
(λ = 0) achieves the highest modularity, but very poor fairness, since
the communities created are monochromatic. As the value of λ increases
the fairness of the output improves, reaching the maximum for λ ≥ 0.4.
At the same time, modularity decreases slowly, up to λ = 0.8, and then
drops sharply. For λ = 0.9, the strength of the electrostatic force results
in grouping together nodes from different colors even when they belong
to different clusters. These communities are sparsely connected, thus
bringing modularity down. Sometimes, a single community is output,
with modularity zero.
In the extreme case where λ = 1, the label selection is based solely on the
electrostatic force. This forces bi-chromatic edges to merge, and same-
color edges to split. Communities are built around bi-chromatic edges,
resulting in a large number of communities, as shown in the right axis of
Figure 1c, usually close to the number of bi-chromatic edges.
Overall, we observe that for λ in [0.4, 0.7] we strike a good balance be-
tween fairness and quality. For the following, we use λ = 0.5 as the
default value.
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Fig. 2: Comparison on synthetic datasets of different hardness.

Comparison on Synthetic Datasets: We now evaluate the perfor-
mance of the FLP algorithm, as we vary the “hardness” of the synthetic
datasets, and we compare with the fair spectral algorithm (FSP). Specif-
ically, we generate synthetic datasets where we vary the ratio b/c of the
probability of connecting two nodes of the same color, that belong to
different clusters, over the probability of connecting two nodes of differ-
ent color that are in the same cluster. We think of the former edges as
impeding the creation of fair communities, while the latter as facilitat-
ing the creation of fair communities. The higher the ratio, the harder
for an algorithm to bring together nodes of different color in the same
community.
We consider the values {5, 10, 15, 20, 25} for the ratio b/c. We vary the
ratio b/c by varying the parameter c. We use the default values for the
parameters a, b, d (0.1, 0.01, 0.0001), and we vary the parameter c to take
values 0.002, 0.001, 0.0006, 0.0005, 0.0004. We set the number of clusters
to k = 4. We use λ = 0.5 for the FLP algorithm, and we also consider
the vanilla LP algorithm. Again, we report averages over 10 different
random graphs, and 10 label permutations per graph.
Figure 2 shows our results. We observe that our algorithm achieves al-
most perfect balance for all settings of the ratio b/c. On the other hand,
the balance for the spectral algorithm deteriorates as the dataset be-
comes harder. As bi-chromatic edges become increasingly rare in com-
parison to single color edges, the FSP algorithm tends to bring together
nodes of the same color and separate nodes of different color, leading to
unfairness.
The FLP algorithm has lower modularity than the spectral algorithm.
This is expected from the fairness-quality trade-off, since the FLP algo-
rithm brings together nodes of different color, which are sparsely con-
nected, while the FSP algorithm is more likely to create monochromatic
communities, which have higher modularity.
We observe that the FLP algorithm on average outputs less than 4 com-
munities, the number of planted clusters. This indicates that the FLP
algorithm is more aggressive in merging clusters to preserve balance.

Results on Real Datasets: Finally, we compare our algorithms on
the real datasets. Table 2 shows the results. For the Label Propagation
algorithms the results are the averages of 10 different runs with different
label permutations. Since we have no ground truth for the “correct”
number of communities, we also perform 10 runs of the FSP algorithm
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Table 2: Algorithm results on real datasets

Dataset Algorithm Balance Modularity Communities

Twitter
LP 0.010 0.549 1189.3
FLP 0.579 0.040 69.0
FSP 0.018 0.083 69.0

Facebook
LP 0.460 0.734 38.2
FLP 0.654 0.798 66.5
FSP 0.563 0.596 66.5

Deezer
LP 0.479 0.469 1697.8
FLP 0.767 0.462 1728.5
FSP 0.493 0.452 1728.5

DrugNet
LP 0.218 0.602 43.0
FLP 0.367 0.656 17.2
FSP 0.345 0.683 17.2

Friendship
LP 0.390 0.662 16.1
FLP 0.632 0.659 13.0
FSP 0.398 0.659 13.0

with the number of communities output by the FLP algorithm in the
corresponding run, and report average values.
The first observation is that the FLP algorithm performs best in terms
of balance on all datasets, sometimes being the clear winner (e.g., on
the Friendship or Deezer networks). It is also competitive in terms of
modularity: It has the best modularity for Facebook and close to the best
in all datasets except for Twitter. Perhaps surprisingly, the LP algorithm
does not always yield the best modularity, although its modularity is
close to the best. This indicates that the fair algorithms are able to
maintain community quality, while achieving fairness.
For the Twitter dataset, the FLP algorithm typically produces a very
large community, and several smaller ones, yielding high balance, but
low modularity. A similar behavior is also observed for the FSP algo-
rithm, however, in this case, the small communities are monochromatic,
bringing down the average balance.

6 Conclusion

In this paper, we addressed fairness in community detection by propos-
ing a physics-inspired fair variant of the Label Propagation algorithm.
Experiments on real and synthetic datasets show that our method effec-
tively identifies fair, high-quality communities, and outperforms existing
baselines. As future work, we plan to explore alternative formulations of
the pulling and electrostatic forces, as well as extensions of our algorithm
for vector datasets.
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