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Abstract—Networks are central to many applications, yet the
mechanisms underlying their formation are not fully under-
stood. In this paper, we investigate network formation using
LLM agents, focusing on whether demographics and personality
influence connection choices. We introduce a simple network
formation process in which, at each timestep, a candidate pool is
constructed for each agent from its two-hop neighbors and a set
of randomly sampled nodes, independently of agent attributes.
By systematically controlling which attributes of the candidates
are revealed to the agent, we study the effect of demographics
and personality traits on network formation.

Our findings indicate strong homophily across multiple di-
mensions, particularly demographics. We further observe that
popularity (i.e., number of connections) is shaped by personality
traits, such as extraversion. In addition, we analyze the effects of
reciprocity and temporal dynamics on these patterns. Our results
have dual significance: they shed light on the mechanisms driving
social network formation, while also revealing potential biases
embedded in LLM models.

Index Terms—Large Language Models (LLMs); Network for-
mation; Social networks; Demographics and Personality traits;
Homophily

I. INTRODUCTION

Networks capture relationships across social platforms, pro-
fessional settings, code collaboration, and citation systems.
Structure matters for who sees what. Acquaintances open new
routes, similarity pulls interactions inward, and platform mech-
anisms such as ranking, recommendation feeds, and trending
modules direct attention [1]-[3]]. These dynamics are evident
on major platforms. On Facebook the social graph shows high
clustering and short paths, and over time user interactions
concentrate on a small core of contacts [4f], [5]. On Twitter
influence is heavy tailed, so a small share of accounts drive
most retweets and mentions [6]. On GitHub transparency in
activity and code history supports coordination and reputation
driven collaboration [[7].

Agent-based modeling (ABM) links micro decisions to
macro patterns and lets us study these dynamics in a controlled
way. Heterogeneous agents follow simple local rules and
generate aggregate patterns such as consensus, clustering, or
polarization [8]-[11]]. Recent systems pair this ABM design
with language model agents that perceive context, store short
memories, and act via text, yielding multi step social behavior
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in open environments [12]-[14]. In parallel, LLM simulations
on minimal platforms reproduce attention inequality and echo
chambers, and probe how feed rules shape outcomes [15],
while other work fixes the network and studies belief dynamics
[16]. We take a complementary route focused on link forma-
tion: we keep a small, explicit link-formation rule and let LLM
agents make selection and acceptance decisions.

Specifically, we study graph creation with an explicit link
formation rule driven by LLM agents. Each source draws a
candidate pool from local structure, selects targets as discrete
choice [17]], and targets may accept or reject. We vary visibility
of demographics and personality traits and report standardized
graph metrics with matched generative baselines [18[|-[21].
This contrasts with prior work that either ties growth to content
engagement [[15[], fixes the interaction network to study belief
dynamics [16], or supplies engineered network features for
link choice [22]. This setup lets us examine effects of attribute
visibility and bilateral acceptance on connectivity, community
structure, and homophily over time.

We start from an initially empty network so that structure
is an outcome rather than an input, which removes inherited
topology and makes the role of information and acceptance
directly observable.

We hold fixed the language model, prompt texts, and per-
step proposal budget, and vary only two parameters: whether
node attributes are visible to agents and whether targets can
accept or reject proposals. This isolates the role of attribute
visibility and bilateral acceptance in shaping the resulting
network. We organize the evaluation around four questions.
First, homophily under visibility: how revealing demographics
or personality traits changes same-attribute links and commu-
nity structure. Second, connectivity: how demographics and
personality traits shape selection behavior and degree. Third,
reciprocity: how requiring the target’s acceptance changes
which proposals become edges and the resulting structure.
Fourth, time: how homophily and connectivity evolve across
timesteps.

We find that making demographics visible shifts selection
toward same-group choices and strengthens community struc-
ture. Making personality traits visible increases trait-based
homophily and introduces cross-cutting signals that attenu-



ate purely demographic effects. Requiring target acceptance
reduces realized edges, increases separation, and modestly
amplifies homophily. Degree associates positively with ex-
traversion and weakly with agreeableness, and negatively with
neuroticism. Relative to random and preferential-attachment
baselines matched on size and density, the resulting networks
exhibit clearer meso-scale structure driven by agent decisions.

Contributions.

e A transparent algorithm for LLM mediated, agent
driven graph creation. At each step, agents build a
small candidate pool from friends of friends (FoF) plus k
uniformly sampled non-neighbors, select up to k targets,
record rejections in a persistent memory M;(a), and add
timestamped edges. The procedure is simple enough to
inspect end to end.

« Two parameter design isolating visibility and accep-
tance. We vary only two parameters, whether demograph-
ics and personality traits are visible and whether targets
must accept, while holding the model, prompts, and the
per-step number of connection attempts fixed. This lets
us attribute structural changes to these parameters.

o Graph-centric evaluation with baseline comparisons.
We focus on three areas: community structure (Louvain,
modularity), connectivity (degree) and homophily, and
reciprocity (effects of acceptance). We compare against
Erd6s—Rényi and Barabdsi—Albert graphs matched on
size and density. Temporal evolution is included as snap-
shots at t=1, 2, 3.

The remainder of the paper is structured as follows. Sec.
presents the agent-based link-formation rule. Sec. [III] de-
tails the experimental evaluation, including research questions
(Sec. [II-A)), setup/metrics (Sec. and evaluation results
(Sec. [MI-C). Sec. [[V] reviews related work. Sec. [V] discusses
limitations and next steps. Sec. concludes. Prompt texts
appear in the Appendix.

II. NETWORK CREATION ALGORITHM

Networks play a central role in many domains, yet the
principles that govern their formation remain insufficiently
understood. In this paper, we consider an initially empty
network of LLM agents, and examine the types of networks
that emerge when connections are formed by the agents over
time.

Specifically, agents are assigned attributes that remain fixed
throughout the process. At each timestep, an agent selects to
connect to another agent from a candidate pool of agents. For
the selection, we control the information provided to the source
agent regarding the attributes of the agents in the pool. For
reciprocity, we also model cases where the target agent may
reject the connection request. Our overall goal is to understand
how attributes shape edge formation and, in turn, the evolution
of connectivity, community structure, and homophily in the
network.

Algorithm 1 Agent Creation

1: Input: number of agents n

2: Output: set A with n new agents

3: for : =1ton do

4: Create agent a

Assign demographic attributes to a
Assign Big Five traits to a

Initialize rejection memory My(a) + 0
Append a to A

® W

1) Agent creation: Let G, = (V, E;) denote the cumulative
undirected graph after timestep ¢, where V is the set of agents
and F, the set of edges where each edge is a timestamped
tuple (¢,7,7), 4,5 € V, and 7 < ¢t. Initially, F; is empty.

The process of agent creation is described in Algorithm
[Il Each agent a € V is assigned attributes specifying its
demographics and personality.

Each agent is first assigned demographic attributes drawn
from predefined distributions. The three attributes considered
are sex, race, and age group, as summarized in Table
adapted from U.S. Census Bureau American Community Sur-
vey (ACS) categories Sex and race are drawn independently
from fixed categorical distributions that approximate popula-
tion frequencies. Age group is assigned by mapping a normal
distribution over adult ages onto the buckets shown in Table

In addition to demographic attributes, each agent is assigned
Big Five trait scores (OCEAN) [23], [24]]: Openness, Con-
scientiousness, Extraversion, Agreeableness, and Neuroticism.
These traits provide a continuous representation of individual
differences in behavior and social preferences. In our simula-
tion, values for each trait are sampled from a truncated normal
distribution in [0, 1], independent of demographics, to ensure
variation while remaining within plausible ranges.

TABLE I: Demographic attribute values used in simulation

Attribute  Values

Sex Male, Female

Race White, Black, Asian, Hispanic

Age Group 18-24, 25-34, 35-44, 45-54, 55-64, 65+

Demographic and psychological attributes together serve
as inputs for connection decisions. Demographics ensure that
population diversity is explicitly represented in the simulation,
while the Big Five traits introduce heterogeneous decision-
making patterns, influencing both the number of connections
agents attempt and the likelihood of accepting or rejecting
connection requests.

Finally, each agent a maintains a persistent rejection mem-
ory Mi(a) C V '\ {a} that stores the identities of agents that
declined its connection requests in the past.

2) Network creation: The process of connection creation is
specified in Algorithm 2]

I'See https://www.census.gov,
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Algorithm 2 Network Creation

1: Input: number of agents n, timesteps T', demographic/trait
distributions, model

2: Output: timestamped undirected graph G; = (V, E;) with
node attributes

3: Initialize agent list A « []

4: AgentCreation(n) > create n agents with attributes

5: Initialize graph G with V < A, Ey < 0

6: for t =1to T do

7 for each agent a € A do

8 Fixed number of new connections & for a

9 Initialize Cy(a) with second-hop nodes at ¢

10: Augment C¢(a) with k uniformly sampled non-
neighbors of a

11: Exclude current neighbors N¢(a)

12: Exclude prior rejectors M;(a) from Cy(a)

13: St(a) < model selects up to k targets from C;(a)

14: for each b € Si(a) with (a,b) ¢ E; do

15: if an acceptance step is required then

16: query b for ACCEPT/REJECT

17: if ACCEPT then

18: add (a,b,t) to E;

19: else

20: add b to My(a)

21: else

22: add (a,b,t) to E;

23: Save node attributes and timestamped edge list

At t = 0, we create n agents and assign to them fixed
attributes that persist for the entire simulation.

At each timestep ¢, each agent a initiates k connection
attempts from a candidate pool of agents. The candidate pool
for agent a consists of all second-hop (friend-of-friend) nodes,
plus k uniformly sampled nodes, excluding the self node a,
current neighbors N;(a), and prior rejectors My (a).

Specifically, for agent a, let

Ni(a)={ueV: (a,u) € E }

be its neighbor set at time t.
We define the friend-of-friend set as

FoFi(a) = {u eV\ (Ni(a)U {a}) :
Jv € Ny(a) such that (u,v) € E; }.

Agent a maintains a persistent rejection memory M;(a) C
V' with the identities of agents that rejected a in the past. If
a proposes to b at step ¢ and b rejects, we update M;(a) +
M, (a)JU{b}. The memory records identities only and does not
include time, context, or reasons. At every step the candidate
pool excludes prior rejectors.

Let Ui(a) be a size-k sample drawn uniformly without
replacement from V'\ (N;(a)U{a}UM,(a)), then the candidate
pool can be written as

C’t(a) = (FoFt(a) U Ut(a)) \Mt(a)

The model then selects up to k targets Si(a) C Ci(a). We
use the same k for sampling and selection.

3) Prompt design: We now provide details about the
two templates we use: a selection prompt and an accep-
tance prompt. Both prompts are parameterized by the current
timestep ¢, the focal agent a, and the candidate pool Cy(a).

o Selection prompt. The prompt includes: (1) a header
with agent a’s own demographics and Big Five traits (2) a
list of candidates v € C(a) that includes an anonymized
ID (for example, U17), whether u is a friend of friend
(FoF) or a random draw and any attributes, and (3) the
instruction that asks for up to % different targets from
Ct(a) in a fixed output format.

o Acceptance prompt. The prompt includes: (1) a header
with target b’s own demographics and Big Five traits, (2)
a initiator summary that shows a’s anonymized ID (e.g.,
U17), whether a is a FoF or a random draw relative to
b and any attributes, and (3) the instruction that requests
a binary decision (ACCEPT or REJECT) with a one-
sentence rationale. If the decision is REJECT, b is added
to M;(a) so that a does not propose to b again.

All runs use a fixed prompt template for reproducibility.

III. EVALUATION

We examine how demographic attributes and Big Five traits
shape the selection of connections. We evaluate an agent driven
process in which each agent selects a target from a candidate
pool, and, when acceptance is on, the selected target decides
whether to accept the proposal. To assess the role of agent
characteristics in link selection, we vary what is visible to the
agents by revealing or hiding demographics (age, sex, race)
and Big Five traits. To evaluate the impact of reciprocity, we
toggle acceptance so that a proposed edge is added only if
the target agrees. We run the selection process in multiple
timesteps to see how connections evolve. We organize the
evaluation around four questions on visibility, connectivity,
reciprocity, and temporal evolution.

The exact agent persona, candidate—selection, and accep-
tance prompts are provided in the Appendix.

All experiments ran on a dual socket AMD EPYC 9335
system with 64 cores and 128 threads, ~1.0 TiB RAM, and
two NVIDIA H200 NVL GPUs with 143,771 MiB memory.

A. Research Questions

RQ1 Homophily. How does visibility influence same attribute
connections and community structure across demograph-
ics and Big Five traits?

Connectivity. How do demographics or Big Five traits
affect selection behavior and node degrees in the result-
ing network?

Reciprocity. What is the impact of acceptance on re-
alized connections and how does it shape the emergent
network structure?

Temporal evolution. How do homophily and connec-
tivity evolve in time?

RQ2

RQ3

RQ4



TABLE II: Parameters used in evaluation

A0 Al

Symbol Setting Meaning

A0 Acceptance off All proposed edges are added

Al Acceptance on Target accepts or rejects

DO Demographics off No demographic attributes

D1 Demographics on  Demographics are visible during the selec-
tion process

B0 Big Five off No Big Five attributes

B1 Big Five on Big Five traits are visible during the selec-

tion process

B. Setup and Metrics

We evaluate how attributes shape target selection and con-
nection formation. The process runs for three timesteps. At
each timestep, every agent attempts k 3 new connec-
tions from its candidate pool, and rejection memory persists
across timesteps. All targeting and acceptance decisions use
Qwen3 [25]] with 30B parameters. Reported values are aver-
ages over five independent runs, and unless otherwise noted we
report the final snapshot at ¢ = 3 and compute all metrics on
the largest connected component (LCC). We vary the visibility
of demographics (D0 and D1) and Big Five traits (B0 and B1),
and whether acceptance is required (A0 and Al).

We study eight settings by toggling three parameters for
acceptance A, demographics D, and Big Five attributes B
(Table [M). All agent decisions use the same model. Agents
always know their own demographic and personality attributes.

All settings run on the same discrete timeline. For each
agent a at step t, the candidate pool Cy(a) is the union of
all second hop nodes and %k uniformly sampled nodes that
are not current neighbors. The self node and prior rejectors
M;(a) are removed from the pool. The rejection memory
M;(a) persists across timesteps. In A0 all proposed edges are
added. In A1 the target decides whether to accept or reject,
and rejections are added to M;(a). When D1 and/or B1 are on,
the corresponding attributes are available to agents and may
influence both targeting and acceptance; under D0O/B0 they
are withheld from decision prompts. Note that in all cases,
an agent is aware of its own demographic and personality
characteristics.

Homophily (RQ1) and Connectivity (RQ2). For homophily
and connectivity we vary what agents can see. We compare
DO to D1 and BO to B1 while keeping the mechanism
fixed. We report same attribute connection rates, community
count, modularity, degree patterns, and the size of the largest
connected component to understand how attribute visibility
affects target selection and community structure.

Reciprocity (RQ3). For reciprocity we compare A0 and Al
while holding B and D fixed. We seek to understand the role of
acceptance in network formation and its impact on structure.
We measure changes in edge count, average degree, diameter,
community count, modularity, and homophily to isolate the
effect of the target’s decision on the network.

Temporal evolution (RQ4). Our goal is to understand how
networks grow and how connectivity and community structure

Communities

Modularity

Timestamp

Fig. 1: Louvain Community structure over time on the Largest
Connected Component (LCC).

develop over time. We report metrics at ¢ = 1,2,3 and
examine the evolution of homophily, edge count, average
degree, community count, and modularity between the first
and final snapshots.

The metrics used in the study are reported next. By default
we use the largest connected component and report t = 1,2, 3,
treating ¢ 3 as the final snapshot. Reported values are
averages over five independent runs.

Metrics.

Modularity @ [26], [27]: Modularity of the communities
on the largest connected component.

Community count K: number of Louvain communities
on the largest connected component.

Edge count m: total number of edges.

Average degree d: mean node degree.

Density [28]]: fraction of actual edges among possible
edges on the largest connected component.

Diameter [28]]: longest shortest path length on the largest
connected component.

Largest component size n: number of nodes in the
largest connected component.

Demographic homophily [2], [29]: percent of edges
whose endpoints share race, sex, or age group.

Trait homophily [2]: percent of edges whose endpoints
fall in the same trait buckets. Each trait is partitioned into
four buckets on [0, 1].

Degree to trait correlation p [30]: Spearman rank
correlation between degree d and a trait score x. Rank
based and scale free. p ~ 1 means higher trait scores
tend to have higher degree, p ~ —1 the reverse, p =~ 0
no monotone relation.

Degree to demographic correlation 7 [31]]: correla-
tion ratio of degree across groups g. Interpreted as the
share of degree variance explained by group membership.
1 ~ 1 means degree differs strongly by group with most
variance between groups. 7 0 means groups have
similar degree and little variance is explained by group

~
~



membership.

We include baselines to help us distinguish effects driven
by agent choices from patterns produced by simple generative
processes.

Baselines. Two generative baselines that provide contrasting
null models are chosen:

o Erdds and Rényi (ER) [32]. Edges appear independently
with equal probability for every pair of nodes and capture
random mixing.

o Barabasi and Albert (BA) [33]. New nodes attach
preferentially to higher degree nodes and produce skewed
degree distributions with hubs.

Both baselines use the same node count n as the agent runs
and the mean final edge count m across configurations so that
densities match. All structural metrics are computed in the
same way for baselines and evaluated settings and are reported
in Table [[V]

C. Evaluation Results

1) Homophily: Demographics visibility (D1) shifts selec-
tion toward same demographic attribute targets and produces
large homophily gains by the final snapshot. When demo-
graphics are visible (B0, D1, A0) race goes from 26.99% to
51.46% and age from 19.65% to 58.95% compared to where
they are not visible (B0, DO, A0) (Table Fig. [2). These
shifts are accompanied by higher modularity from 0.389 to
0.546 (Table [IV} Fig. [I) at comparable n and lower density
from 0.033 to 0.029 (Table [[V).

When Big Five traits are visible and demographics are
hidden (B1 with D0) under A0, selection shifts toward same
trait pairs across all traits at the final snapshot. The largest
changes are in Openness and Extraversion. Openness rises
from 41.00% to 52.42% which is an increase of 11.42 per-
centage points (Table Fig. B). Extraversion rises from
39.10% to 45.48% which is an increase of 6.38 points
(Table Fig. B). At the other end, Agreeableness rises
modestly from 39.53% to 40.87% which is an increase of
1.34 points (Table [T} Fig. [3). In descending order of absolute
change, the traits are Openness, Extraversion, Neuroticism,
Conscientiousness, Agreeableness. Relative to traits hidden at
the same settings (B0 with DO under A0), modularity shows
a small decrease, @) from 0.389 to 0.351 (Table [[V] Fig. [I).
This indicates the existence of more cross community links,
which distribute edges more evenly and lower Q.

When demographics and Big Five traits are both visible (B1
with D1) under A0, each attribute family has a distinct effect.
Same trait matching increases, for example relative to B0 with
D1 Openness goes from 41.31% to 46.49% and Neuroticism
from 43.11% to 49.89% (Table [II). At the same time race
and age homophily decrease and sex homophily increases,
for instance race goes from 51.46% to 46.61% and sex from
45.45% to 51.95% (Table I} Fig. 2). Community cohesion is
lower than with demographics alone, with ) from 0.546 under
B0 with D1 to 0.442 under B1 with D1 (Table Fig. [),
consistent with more cross community links. In short Big Five

Sex

Age Group

A0

Al

Timestamp

Fig. 2: Homophily for demographic attributes.

visibility introduces cross cutting structure that weakens race
and age matching, strengthens same sex pairing, and reduces
community cohesion compared to D1 alone.

2) Connections: With traits visible and demographics hid-
den (B1 with DO0) under A0, degree increases with Ex-
traversion and Agreeableness and decreases with Neuroticism
(Fig. [5). This pattern appears at the first and final snapshots
(Fig. [B). Extraversion shows the strongest positive association
and Neuroticism the clearest negative one. At the graph level,
average degree is similar across visibility settings, for example
16.565 under BO with DO and 15.656 under B1 with DO at
the final snapshot (Table [[V).

For demographics, hiding attributes yields weak degree
associations, and they become stronger when demographics
are visible. Sex shows the most stable degree correlation while
race and age display higher homophily but smaller or mixed
degree correlations at the final snapshot (Fig. [).

3) Reciprocity: Acceptance (Al) reduces the number of
formed edges and increases separation. For example, under
B0 with DO edges go from 4141 to 3411, diameter from
4 to 5.33, modularity from 0.389 to 0.563, the number of
communities from 11.33 to 13.00, and average degree from
16.565 to 13.725 (Tables [[V] [T} Fig. [T). When demographics
are visible, A1 increases demographic homophily slightly and
consistently. For example, under B0 with D1 race goes from
51.46% to 52.25% and age from 58.95% to 60.53% (Table III).
Trait homophily changes are small. With traits visible and
demographics hidden under B1 with DO Openness increases
by 1.54 percentage points and Extraversion by 1.23 percentage
points at the final snapshot (Table [[I). Under A1, the trait and
demographic degree associations remain the same at the first
and final snapshots (Fig. B| Fig. d). Average degree is lower



TABLE III: Final-snapshot homophily metrics at ¢ = 3.

Hom. race (%) Hom.sex (%) Hom.age (%) Hom.Open (%) Hom.Cons (%) Hom.Extr (%) Hom.Agree (%) Hom.Neuro (%)

BO-D0-A0  26.988 50.217 19.648 41.003 43.884 39.101 39.527 46.264

BO-DO-Al  27.300 50.738 18.822 41.877 44.930 38.330 41.045 46317

BI-D0-A0  26.239 51457 20.652 52418 18425 45478 40871 52.206

BI-DO-Al  27.666 51.076 20.008 53.954 48.725 46.710 41.403 52.195

BO-DI-A0 51458 45451 58.946 1311 14794 38637 37.732 43.109

BO-DI-Al  52.251 46.451 60.526 39.967 44252 38473 38.849 44.383

BI-DI-A0 _ 46.613 51952 47101 76.488 48063 42228 1977 49.887

BI-DI-Al 45912 52.326 46.715 46.644 48.088 41.429 41.555 50.542

than under A0, for example 13.725 under BO with DO and A0 Al

15.480 under B1 with DO at the final snapshot (Table [IV). e P— == P—

Although acceptance is expected to increase homophily, o] yd -
the results indicate that the candidate selection step acts y .
- - §

as the main filter in the edge creation process. Acceptance
operates as a second filter that is applied after selection.
It thins the proposed set, which reduces formed edges and
increases modularity, while producing only small increases in
demographic homophily and little change in trait homophily.
Finally, relative to ER and BA baselines matched on size

and density, our graphs exhibit higher modularity (Table [[V]), °
indicating that agent selection and acceptance meaningfully -

influence the observed structure.

IV. RELATED WORK

Agent-Based Models (ABMs) define a population of het- -

erogeneous agents, an interaction graph, and update rules that
map local information to the next state of each agent. Past re-
search demonstrates how simple rules can produce consensus,
clustering, or polarization [8]], [9]], [34]. In opinion dynamics,
an agent holds a belief, observes neighbors, and updates by
averaging, by moving toward similar views within a confidence
bound, or by moving away from views that differ a lot. The
resulting patterns depend on network structure, noise, and
heterogeneous thresholds [[10], [[11]]. Recent research advocates
a disciplined protocol: specify the minimal mechanisms that
reproduce the target pattern, verify the fit, and then attempt
falsification through ablations, competing mechanisms, sen-
sitivity analyses, and out of sample validation [18], [19].
We follow this ABM practice. We keep interpretable rules,
pair them with LLM agents, and use an explicit, attribute-
aware link formation rule to study how selection and bilateral
acceptance change network structure over time.

An agent is a language model with memory and acts
through text. The agent reads context, stores short memories,
writes plans, and produces messages that other agents can
read. Even a minimal social media setting already shows
echo chambers, attention inequality, and amplified polarized
voices. Platform simulations reproduce echo chambers and
attention inequality, and show that the exposure rule shifts
visibility and community structure [15]], [35]. Earlier research
models these mechanisms with generative agents that maintain
episodic memories, reflect, and plan, yielding multi-step be-
havior [12], [13]]. Interactive evaluation environments assess
cooperation, negotiation, and norm following in multi-agent

Agreeableness

Neuroticism

Openness

Conscientiousness
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Fig. 3: Homophily for Big Five personality traits.

interaction [14]]. This connects to ABM aims for micro-to-
macro emergence [8]], [10], [11]], where updates are determined
by model inference rather than fixed numeric rules.

Another line of work studies how LLM agents update beliefs
on fixed networks, showing movement toward accuracy with
clean information and polarization under biased exposure or
memory settings [16]. These design choices map to classic
opinion-dynamics mechanisms (bounded confidence, attrac-
tion, repulsion) [8]], [10], [[11], [36[], whereas our focus is link
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TABLE IV: Final-snapshot metrics on the largest connected component (LCC) at ¢ = 3 across configurations and baselines.

B0-D0-A0 B0-D0-A1 B1-D0-A0 B1-D0-A1 B0-D1-A0 B0-DI-A1 B1-DI-A0 BI-DI-A1 ER  BA
n 500 497 500 500 500 500 500 500 500 500
m 4141 3411 3914 3870 3639 3517 3727 3683 3769 3936
avgDegree 16565 13725 15656 15480 14556 14077 14908 14733 15076 15.744
Density 0.033 0.028 0.031 0.031 0.029 0.028 0.030 0.030 0030 0.031
Diam 4 5333 4 4333 5 5333 4333 4.667 4 4
#Comms 11.333 13 8.333 8.667 9.333 9.667 9 9.333 7 11
Q 0389 0563 0351 0369 0.546 0.562 0.442 0445 0234 0207
A0 Al We take synthetic graph creation as the main object of study.
N ol Em 1 Prior work covers three adjacent settings, in which an existing
+ } graph or a predefined growth protocol is assumed. First, en-
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Fig. 5: Big Five vs Degree (Spearman p).

formation and its structural effects. Recent work measures the
graphs that form when LLM agents choose partners, finding
heavy-tailed degree (preferential attachment), high clustering
(triadic closure), and attribute assortativity (homophily), along-
side short paths and cohesive communities [22]. These patterns
align with classic results on scaling, small worlds, homophily,
and modularity [2], [26], [33[], [37]. We model link formation
as discrete choice over an explicit candidate pool [17]] and
use synthetic graph benchmarks to measure how selection
and acceptance settings shift connectivity, homophily, and
community structure [21]].

gagement driven growth on a minimal platform, where posting
and reposting raise exposure and induce follow links [|15]]. Sec-
ond, belief updating with fixed network under cognitive and
memory manipulations rather than link formation [16]. Third,
explicit candidate pool selection, where the model receives
network features such as degree and common neighbors and
chooses which edges to add [22]. In contrast, structure in our
setting emerges from an initially empty network through an
agent-driven process. We make the candidate pool explicit,
separate selection from acceptance, vary attribute visibility,
and measure the resulting changes in connectivity, homophily,
and community structure. See Section [[l] for details.

V. LIMITATIONS AND FUTURE WORK
A. Limitations

Model dependence. All agent decisions use one LLM family
under a fixed prompt and decoding setup. Results can vary
across families and versions. For robustness, we plan repli-
cations with GPT5 [38], [39]], Claude [40]], and DeepSeek
models V3 and R1 [41], [42].

Mechanism simplicity We adopt a single transparent rule that
builds pools from local topology with limited exploration, and
we use a small fixed number of connection attempts per step.
This design supports clear ablations and reproducible results.
Our goal is to identify the contribution of attribute visibility
and acceptance. We confine the study to the implemented
rule and do not survey alternatives. We defer more complex
mechanisms to future work.

Attribute coverage Agents currently operate with demo-
graphics and Big Five traits. Other attributes such as education,
employment or institutional affiliation, interests, or political
alignment are not included in this study. Within this scope,
demographics and Big Five traits are handled independently
and we do not model joint or conditional effects.

Temporal depth of rejection memory. Each agent keeps a
single rejection memory that persists without decay or reset.
Rejected targets are stored and excluded from future proposals.
The memory stores only identities and does not record time,
context, or reasons. Exploring bounded memory, decay, and
adaptive recall is left for future work.

B. Future work

Richer attributes and interactions. We will extend the at-
tributes to cover education, occupation or sector, institutional



ties, interests, and political signals when appropriate. We will
analyze main effects and interactions to assess which attributes
have the largest impact on link selection in different settings.

Network type comparison. Different networks follow dif-
ferent formation mechanisms. We will keep the link for-
mation rule fixed and vary the context, comparing social
platforms such as Facebook and Twitter/X, code collaboration
on GitHub, professional networking on LinkedIn, and offline
settings such as workplaces and friendship networks. The goal
is to test whether the effects of attribute visibility and accep-
tance remain stable across contexts and to identify context
specific drivers of link formation [1]-[7]], [22].

Temporal depth and adaptation. We will extend to more
timesteps and allow attributes to evolve as the process unfolds.
Traits and identities update in response to past outcomes, SO
agents shift their profiles after successful or failed proposals.
The number of new connections an agent seeks at each step
adapts to recent performance. We will examine how these
choices shape network development and look for tipping points
where small changes in conditions lead to abrupt shifts in
structure, for example fragmentation into many components
or the emergence of a dense core with a sparse periphery.

Cross model robustness. We will study how the choice of
language model affects graph creation. We will rerun the same
mechanism with alternative models and compare how they
shape target selection, acceptance behavior, and exploration.
We will also test heterogeneous populations where agents
use different models to capture diversity in decision styles
and to assess whether mixing models stabilizes or amplifies
structural effects. We will examine how our mechanisms, such
as memory discipline and attribute visibility, interact with the
model. The goal is to distinguish effects that persist across
models from effects that depend on a specific model.

Trait and demographic coupling. We will replace uniform
trait draws with demographic aware distributions that let age
and sex influence baseline levels and variability for each Big
Five trait. This will let us test whether coupling traits to demo-
graphics amplifies or dampens the effects of attribute visibility
and acceptance on assortativity and community structure [24]],
[43[]-[45]].

VI. CONCLUSIONS

We create networks from agent level LLM decisions rather
than imposing a fixed graph. A transparent selection rule builds
candidate pools from local structure, and two parameters
control what agents know and how edges form. Attribute
visibility determines whether demographics and Big Five
traits are available in decisions, and acceptance determines
whether a proposed edge must be approved by the target. This
design isolates how attributes and bilateral acceptance shape
connectivity and community structure over time.

Three findings stand out. First, visibility matters. When
demographics are visible, selection shifts toward same group
targets and community structure strengthens. When personality
traits are visible, selection shifts toward same trait targets.
These trait signals cut across demographic boundaries, so

showing traits together with demographics introduces cross
cutting links and reduces cohesion. Second, acceptance acts as
a second filter. Requiring the target to accept reduces realized
edges, increases modularity and separation, and yields only
small additional gains in homophily. Third, traits relate to
degree in interpretable ways. Extraversion is associated with
higher degree, Neuroticism with lower degree, and Agreeable-
ness shows a weaker positive relation, whereas demographic
degree associations are modest and most stable for sex.

Compared with Erdés and Rényi and Barabdsi and Albert
graphs that match size and density, our networks show higher
modularity. These baselines capture random mixing and pref-
erential attachment. The gap indicates that the structure we
observe is driven by agent selection and acceptance rather than
artifacts of the generative baselines.

The scope is intentionally narrow to keep the role of the
parameters transparent. We fix attributes and k, use a sim-
plified link formation rule, and evaluate with one model and
one prompt family over three timesteps. The rejection memory
records identities only. We focus on Louvain communities and
a standard set of graph measures. Future work can broaden
attribute coverage and interactions, compare outcomes across
network types, extend temporal depth, vary pool composition
and k, try alternative community methods, enrich acceptance
mechanisms, and test robustness across models and prompt
designs. Extending beyond the current demographic and trait
choices and modeling dependencies between traits and de-
mographics would support broader assessment of downstream
structural effects.

Our results have dual significance. They clarify the mech-
anisms that drive social network formation and they reveal
systematic preferences of current LLMs that can disadvantage
groups. Because edges arise from model decisions, these
preferences become structural and translate into visibility gaps,
degree differences, and community segregation. We treat this
framework as a testbed for fairness, and will design and
evaluate interventions that counter bias, including adjustments
to candidate pool composition, masking or balancing attribute
visibility, calibrating acceptance utilities, and adding exposure
or degree constraints. Our goal is to design mechanisms that
improve fairness while preserving connectivity and community
cohesion.
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APPENDIX

In this appendix we provide the exact prompt templates
used in the simulation. Prompts determine how agents perceive
their attributes, select candidates, and decide whether to accept
proposals. Each template is shown, with parameterized fields
such as AGE_GROUP, RACE, SEX, and Big Five trait values
that are instantiated at runtime. The three prompt types are the
Agent Persona Prompt, which defines the agent’s identity, the
Connection—Choice Prompt, which specifies how targets are
selected, and the Acceptance—Decision Prompt, which applies
when reciprocity is enabled.

Agent Persona Prompt

You are a real human.

You are a AGE_GROUP SEX of RACE background.
Your Big Five personality profile (0--1) is:
Openness=0, Conscientiousness=C,
Extraversion=E,

Agreeableness=A, Neuroticism=N.

Make decisions consistent with this
personality profile.

Connection—Choice Prompt

You will choose new people to approach for a
social connection.

Your profile: race:RACE, sex:SEX,
age:AGE_GROUP, BF (Openness, Conscientiousness,
Extraversion,Agreeableness, Neuroticism)
=(0,C,E,A,N).

Here are potential candidates:

- id:ID_1 | race:RACE | sex:SEX |
age:AGE_GROUP | BF(...)=(0,C,E,A,N)

- id:1D 2 | ...

Pick up to k candidates to approach now.
Prefer people who fit your values and goals.

Demographic fields appear only when D1 is enabled; Big Five
fields appear only when B1 is enabled.
Acceptance-Decision Prompt
Someone asked to connect with you. Decide
using your values only|no numbers or
thresholds.
Is this person a friend-of-a-friend?
FoF:true/false
Them: id:ID | race:RACE
sex:SEX | age:AGE_GROUP
|BF(Openness,Conscientiousness,
Extraversion,Agreeableness, Neuroticism)
=(0,C,E, A, N) .
You: id:ID | race:RACE |
sex:SEX | age:AGE_GROUP
|BF(Openness,Conscientiousness,
Extraversion,Agreeableness, Neuroticism)
=(0,C,E,A,N) .
If they align with your preferences, reply
exactly "ACCEPT’; otherwise reply exactly
"REJECT' .

Used only when acceptance is enabled (Al). The FoF flag

is shown as true/false. Demographic fields appear only under
D1. Big Five fields appear only under B1.
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