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1. Introduction
The AI revolution has ushered in a world where algorithms increasingly make, or assist in

making, decisions that affect our lives in diverse ways. These decisions can be relatively trivial
(e.g., suggesting the next song to play) or highly consequential (e.g., recommending a career
path, determining a medical treatment, or influencing judicial sentencing). Given this growing
influence, there are serious concerns about whether algorithmic decisions are fair and unbiased.
Such concerns are supported by mounting empirical evidence: multiple cases have revealed that
automated systems can exhibit bias against specific population subgroups, often with harmful
consequences [3].

The demand for fairness guarantees in algorithmic outputs has given rise to the research areas of
Responsible AI and Algorithmic Fairness. Considerable effort has been invested in understanding
and quantifying algorithmic bias, and in designing methods to mitigate it. Bias mitigation aims
to produce algorithms with formal fairness guarantees, typically defined under specific fairness
criteria.

In Deliverable D3.1, we outlined general approaches to bias mitigation and presented key algo-
rithms from the literature relevant to the Themis project. In this report, we present our current
contributions to bias mitigation and the design of novel fair algorithms.

The report is structured as follows:

• Section 2 provides an overview of our current work on bias mitigation and fair algorithm
design.

• Section 3 presents our fair algorithms for community detection and outlines ongoing efforts
to extend these methods to numerical data.

• Section 4 presents techniques for bias mitigation in opinion formation processes.

• Section 5 presents an approach for achieving Pagerank fairness at minimum cost.

• Section 6 presents a methodology for enforcing fairness in the k-NN classification algorithm.

• Section 7 concludes the paper.

2. Current Work Overview
Following the categorization in Deliverable D3.1, all our algorithms adopt the in-processing

bias mitigation approach. That is, we design or modify algorithms to directly incorporate fairness
during computation, rather than before or after the process.

Our work focuses on fair algorithm design for the following core problems: clustering and
community detection, PageRank, opinion formation, and classification. The main contributions
and our ongoing work are summarized below:
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• Fair Modularity-based Community Detection. We propose a novel fair community
detection algorithm that incorporates a community modularity fairness metric we introduce.
It extends the popular Louvain algorithm and was published in the 2025 ACM International
Web Conference [16]. We have also adapted our approach for spectral clustering, with a
submission currently under review for the 2025 IEEE ICDM Conference.

• Fair Label-Propagation. We present a methodology for integrating balance into the popu-
lar Label Propagation community detection algorithm using physics-inspired principles. This
approach was presented in the Algorithmic Fairness in Network Science workshop at NetSci
2025, and published at ASONAM 2025 [23]. We are currently exploring the application of
the general methodology to clustering problems involving numerical data.

• Fair Opinion Formation. We introduce a new fairness metric for opinion dynamics and
propose an algorithm that achieves fairness in such processes. This work has been submitted
for publication to the 2025 IEEE ICDM Conference.

• Fair Pagerank. We propose a fair version of the PageRank algorithm, building on the
framework in [25]. Our approach aims to minimize the cost of the local interventions required
for achieving fairness. This work has been submitted for publication to the 2026 ACM KDD
Conference.

• Fair k-NN Classification. We are developing a novel method for achieving fairness in the
k-Nearest-Neighbors (k-NN) classification algorithm. A submission to the ACM SIGMOD
2026 Conference is currently in preparation.

In the following sections, we elaborate on each of these contributions in detail.

3. Fair Algorithms for Community Detection

Given as input a network G = (V,E), the output of a community detection algorithm is a
partition of the nodes into k disjoint subsets (communities), C = {C1, C2, ..Ck}, Ci ⊆ V , Ci∩Cj =
∅, ∪ki=1Ci = V . The number of communities k may be given as input, or it may be decided by
the algorithm. The goal is to discover communities where the nodes are densely intra-connected,
while sparsely inter-connected.

To define fairness, we assume that the nodes of the graph are associated with some sensitive
attribute A, such as gender, religion or race, that takes t values {a1, ..., at}, which partition the
nodes of the graph into t groups G = {G1, G2, .., Gt}, Gi = {v ∈ V : A(v) = ai}. In the following,
we will often refer to the attribute values, and the corresponding groups, as colors. For simplicity,
we assume two colors Red (R) and Blue (B). We will assume that the red group is the protected
or minority group, for which we want to mitigate bias.

There is a variety of community detection algorithms that use different criteria to produce
communities [13]. In our work we consider two approaches: modularity-based algorithms [20, 5,
24], and label propagation algorithms [22].

3.1. Modularity-based Community Detection
Given that network processes, including opinion formation, information propagation, and dif-

fusion, primarily occur through interactions along the edges of the network [30, 12], in [16], we
look into group fairness from the edge perspective, and we introduce a modularity-based metric of
fairness.

3.1.1. Group Modularity fairness
Modularity measures the divergence between the number of intra-community edges and the

expected such number assuming a null model [18, 10]. The most commonly used null model is
a random graph where the expected degree of each node within the graph is equal to the actual
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degree of the corresponding node in the real network. Specifically, the modularity of community
Ci, Q(Ci), is defined as [18]:

Q(Ci) =
1

2m

(∑
u∈Ci

∑
v∈Ci

Auv −
ku kv
2m

)
(1)

where A is the adjacency matrix of G, m the number of edges in G and ku, kv the degree of
node u, and v respectively. Modularity provides a measure of how well nodes in a community are
connected with each other. Negative values indicate less connections than expected, while positive
values indicate more connections.

Our goal is to ensure that red nodes are well connected within each community. Thus, for each
red node u in Ci we take the difference between the actual number of its intra-community edges
and the expected such number. We call this measure red modularity.

As before, the expected number of connections is estimated assuming as null model a random
graph that preserves the degrees of nodes in G. Using this null model, red modularity, QR(Ci) is
defined as:

QR(Ci) =
1

2m

∑
u∈CR

i

∑
v∈Ci

(
Auv −

ku kv
2m

)
. (2)

We define similarly the blue modularity QB(Ci). We refer to red and blue modularity collectively
as group modularity.

Note that if we consider the whole graph as a single community both the red and the blue
modularity are zero. In general, positive values in a community mean that the nodes with the
corresponding color are more connected in the community than expected.

We define (group) modularity unfairness by comparing the red and blue modularity.

Definition 1 For a community Ci ∈ C, the modularity unfairness of Ci, u(Ci), is defined as:

u(Ci) = QR(Ci)−QB(Ci).

Negative values of u(Ci) indicate unfairness towards the red group meaning that the red nodes
are less well-connected within the community than the blue ones. Positive values indicate the
opposite, while a zero value indicates lack of unfairness towards any of the groups.

We also consider diversity within each community by looking at the edges that connect nodes
of different color. Let us call these edges diverse edges. Note that the expected number of diverse
edges cannot be estimated using the same null model, since we need to know the color of both
endpoints of each edge. Instead, in this case, we estimate the expected number of diverse edges
using as null model a random bipartite graph, with edges only between nodes of different color,
that preserves the degrees of the nodes in the original graph G.

For a community Ci, the diversity modularity, or simply diversity, is defined as:

DRB(Ci) =
1

2m

∑
u∈CR

i

∑
v∈CB

i

(
Auv −

ku kv
m

)
. (3)

If we consider the whole graph as a single community, then diversity takes a non positive value.
The larger the value of DRB the more diverse the network.

We also consider a null model which is not agnostic of the color of edge endpoints. For a node
u, let kRu be the number of edges of u to red nodes and kBu be the number of edges of u to blue
nodes, kRu + kBu = ku. In the following, kRu and kBu are respectively called the red degree and blue
degree of node u.
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We consider as null model a random graph where the expected red degree and the expected
blue degree of each node is equal to the actual red degree and blue degree of the corresponding
node in the real graph G. Formally, let Puv be the probability of creating an edge between nodes u
and v. Let mRR be the number of red-red edges, mRB the number of red-blue edges and mBB the
number of blue-blue edges in the graph. We have that Puv = kRu kRv /2mRR, for red nodes u, v ∈ R,
Puv = kBu kBv /2mBB for blue nodes u, v ∈ B, and Puv = kBu kRv /mRB for red-blue nodes u ∈ R and
v ∈ B. For any node u, it holds that

∑
v∈R Puv = kRu and

∑
v∈B Puv = kBu .

We define the labeled red modularity QR
L(Ci) by taking again the difference between the actual

number of intra-community edges involving red nodes, and the expected such number, but now
considering the color (or, in general, label) of both endpoints.

QR
L(Ci) =

1

2m
(
∑

u∈CR
i

∑
v∈CB

i

(Auv −
kBu kRv
mRB

)

+
∑

u∈CR
i

∑
v∈CR

i

(Auv −
kRu kRv
2mRR

)).

(4)

We define similarly the labeled blue modularity QB
L (Ci). We refer to labeled red and labeled

blue modularity collectively as labeled group modularity. Again, if we consider the whole graph as
a single community both the labeled red and the labeled blue modularity are zero.

We define the labeled modularity unfairness by comparing the red and blue labeled modularity.

Definition 2 For a community Ci ∈ C, the labeled modularity unfairness of Ci, uL(Ci), is defined
as:

uL(Ci) = QR
L(Ci)−QB

L (Ci).

Negative values of uL(Ci) indicate unfairness towards the red group, positive values indicate
unfairness towards the blue group, and a zero value lack of unfairness.

We define labeled diversity modularity, or simply labeled diversity, as follows:

DRB
L (Ci) =

1

2m

 ∑
u∈CR

i

∑
v∈CB

i

(
Auv −

kBu kRv
mRB

) . (5)

The labeled diversity of the whole graph is zero, while positive diversity values in a community
indicate that the community contains more diverse edges than expected.

3.1.2. Fairness-Aware Louvain Community Detection
Given the definitions of modularity fairness, we propose a novel fairness-aware community

detection algorithm. Our algorithm is based on the well-known Louvain algorithm that identifies
communities in networks by optimizing modularity [10, 5, 24]. The algorithm was published in [16].

The fairness-aware Louvain algorithm (Algorithm 1) follows a hierarchical agglomerative ap-
proach, starting with each node forming its own community. The original Louvain algorithm joins
together two communities whose merge produces the largest increase in modularity Q (Eq. 1). The
fairness-aware algorithm uses two-criteria: two communities are joined if (1) modularity increases
and (2) a group fairness criterion (FC) is met.

For FC, we consider different approaches using either the non-labeled and the labeled group
modularity, namely:

(a) the fairness-gain approach where we ask that unfairness in absolute value decreases,
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(b) the group-increase approach, where we ask that the group modularity of the group towards
which the network is unfair increases

(c) the diversity-increase approach where we ask that diversity increases.

The algorithm operates in two phases that are repeated iteratively. In the first phase, the
algorithm computes for each node u the gain in modularity and the fairness criterion FC when
removing u from its current community and placing it to each of its neighboring communities.
This process is applied repeatedly and sequentially and stops when a local maxima is reached, i.e.,
when no individual move can both increase modularity and satisfy the FC criterion.

In the second phase, the algorithm constructs a new graph whose nodes are now the communities
found during the first phase. The algorithm operates on a weighted graph; each edge e is associated
with a weight, w(e), initially set to 1. Upon merging, the weights of the edges between the two
nodes are set equal to the sum of the weights of the edges in the corresponding two communities.
Edges between the nodes inside each community are modeled with a self-loop whose weight is the
sum of the weights of these edges. For the node degrees, it holds k(u) =

∑
v,(u,v)∈E w(u, v) and

kX(u) =
∑

(u,v)∈E,v∈X w(u, v), for X ∈ {R,B}.
Once the graph is constructed, the first and second phase are repeated on the new graph. The

iterations continue until there are no changes. The computational complexity of Algorithm 1 is
O(L|E|), the same with the original Louvain, where O(|E|) is the complexity of the two phases,
and L the number of iterations.

Algorithm 1 Fairness-Aware Louvain
Input: Graph G(V,E,A) where V is the set of nodes, E is the set of edges, and A are the node
colors
Output: List of communities detected.
repeat

Assign every node v ∈ V to a singleton community
Calculate modularity Q
for each node v ∈ V do

for each u in neighbors of v do
Calculate the modularity gain ∆Q and fairness criterion FC from the removal of v from
its current community and placement in the community of each neighbor.
if modularity increases and FC is met then

Move v to neighboring community
end if

end for
end for
Create new "super-nodes" from the communities found in previous step. The new V set
consists of these "super-nodes".
Recalculate the weight of the edges between these new "super-nodes".

until there is no improvement

3.1.3. Group-Aware Modularity Matrices

Building upon the work in [16], we now consider a similar definition of modularity fairness,
and we propose modifications of the Spectral and Deep Community Detection algorithms that
incorporate fairness.

Let A ∈ Rn×n denote the adjacency matrix of the graph G. We partition A into four disjoint
sub-matrices:

A =

[
ARR ARB

ABR ABB

]
where
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• ARR: the matrix with the edges between Red nodes,

• ARB : the matrix with the edges from Red nodes to Blue nodes,

• ABR: the matrix with the edges from Blues nodes to Red nodes, and

• ABB : the matrix with the edges between Blue nodes.

Since the graph is undirected, it holds that ARB = A⊤
BR.

We now define the sub-matrices AR, AB , and Adiv as follows:

AR =

[
ARR ARB

ABR 0

]
AB =

[
0 ARB

ABR ABB

]
Adiv =

[
0 ARB

ABR 0

]
where

• AR: the matrix with all edges incident to Red nodes,

• AB : the matrix with all edges incident to Blue nodes

• Adiv: the inter-group adjacency matrix, capturing diversity across groups.

Given these matrices, we can define the corresponding subgraphs GR, GB and Gdiv. We will use
these matrices to decompose the modularity matrix, and define the clustering objectives that we
use throughout this work.

Classical modularity optimization builds upon the modularity matrix, introduced by New-
man [19]:

B = A− dd⊤

2m

where A is the adjacency matrix, d is the degree vector with di being the degree of node i, and m
is the number of edges in the graph.

The modularity score for the partition C = {C1, C2, . . . , Ck} can be computed using the modu-
larity matrix B. Let S ∈ {0, 1}n×k be the binary community assignment matrix, where Sij = 1 if
node i ∈ Cj , and 0 otherwise. Then, the modularity of the partition C defined by the assignment
matrix S is given by:

Q(S) = 1

2m
Tr(S⊤BS), (6)

where Tr(·) denotes the matrix trace [19].
We can now use the decomposition of the adjacency matrix to define the group-aware variants

of modularity defined in [16], by decomposing the modularity matrix. Specifically, we define the
red modularity matrix BR using the red adjacency matrix AR as follows:

BR = AR −
dRd

⊤
R

2mR

where dR is the degree vector for the graph GR and mR is the number of edges in the graph GR.
The modularity score for red group connectivity, denoted QR, is then given by:

QR(S) =
1

2m
Tr(S⊤BRS) (7)

Analogously, we define the blue modularity matrix BB using the blue adjacency matrix AB and
the degree vector dB of the graph GB . We also define the diversity modularity matrix Bdiv using
the matrix Adiv and the corresponding degree vector ddiv:

Bdiv = Adiv −
ddivd

⊤
div

2mdiv
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Qdiv(S) =
1

2m
Tr(S⊤BdivS) (8)

These formulations allow us to measure and optimize modularity with respect to both group-
specific and inter-group connectivity patterns. By incorporating group constraints directly into the
adjacency structure, our modularity matrix variants enable fairness-aware spectral optimization,
and fairness-aware loss functions.

3.1.4. Spectral and Deep Modularity Fair Algorithms
We now describe our algorithms for optimizing group modularity. We consider two classes of

algorithms. Spectral community detection algorithms that make use of the eigenvectors of the
modularity matrices, and deep community detection algorithms that use the modularity matrices
to redefine the loss function.

Input-Based Fair Spectral Community Detection
Spectral community detection using the modularity matrix B was first introduced in [19].

The approach is similar to that of spectral clustering using the Laplacian matrix. The algorithm
computes the top-k eigenvectors of the matrix B, which are viewed as a continuous approximation
of the discrete binary assignment matrix S. It then uses these vectors to obtain the communities,
typically by applying k-means clustering on the extracted k-dimensional vectors of the nodes.

To enable fairness-aware spectral clustering, we define a modified modularity matrix:

B
(λ)
X = (1− λ)B + λBX ,

where B is the standard modularity matrix, and BX ∈ {BR, Bdiv} is a fairness-aware modularity
matrix chosen according to the fairness criterion (e.g., group or diversity), with the parameter
λ ∈ [0, 1] controlling the emphasis on structural versus fairness-aware connectivity.

Specifically, we propose two new spectral community detection algorithms that rely on the
different modularity matrices we have defined:

GroupSpectral: The algorithm assumes a protected group, usually the minority one, for which
we want to achieve strong internal connectivity. It uses the modified modularity matrix B

(λ)
X =

(1 − λ)B + λBX , where BX ∈ {BR, BB} is the group modularity matrix corresponding to the
selected protected group (red or blue). Then it applies the spectral clustering process: It extracts
the k largest eigenvectors of B(λ)

X and performs k-means clustering to obtain the communities. The
goal is to discover communities that simultaneously preserve structural quality and enhance group
connectivity for the protected group.

DiversitySpectral: This algorithm uses B
(λ)
div = (1− λ)B + λBdiv matrix to extract the eigen-

vectors, and as before applies k-means to obtain the communities. The goal of the algorithm is to
obtain communities with high diversity modularity.

All spectral models have complexity O(mk) for sparse graphs [29].

Input-Based Fair Deep Community Detection
For this class of algorithms, we extend the Deep Modularity Network (DMoN) framework

introduced in [26] to incorporate fairness-aware objectives. DMoN uses a Graph Convolutional
Network (GCN) on the normalized adjacency matrix A to obtain k-dimensional node embeddings.
Then it applies soft-max on the embeddings to obtain a soft assignment matrix S of the nodes to
clusters. This soft assignment matrix is used to define the loss function LDMoN, which is defined
as follows:

LDMoN = − 1

2m
Tr(S⊤BS) + γRcollapse
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The first term corresponds to the modularity Q, while the second term is a regularization term
that is defined as:

Rcollapse =

(√
k

n
∥S⊤∥F − 1

)
This term discourages degenerate clustering solutions, such as assigning all nodes to a single
community.

Building on the fairness-aware modularity formulations used in the spectral setting, we extend
this idea to the deep clustering framework by modifying the input adjacency matrix. Specifically,
we define:

A
(λ)
X = (1− λ)A+ λAX ,

where AX ∈ {AR, Adiv} is selected based on the desired connectivity objectiveeither group or
diversity based. This modification retains the global structure of the graph while increasing the
influence of AX . The parameter λ ∈ [0, 1] controls the trade-off between preserving global structure
and increasing the influence of group-based connectivity.

GroupDMoN: This algorithm promotes strong connectivity within a protected group by using
the modified adjacency matrix A

(λ)
X = (1 − λ)A + λAX , where AX = AR retains only edges

involving nodes from the target group (e.g., red nodes). The model is trained on A
(λ)
X and learns

cluster assignments by optimizing a trade-off between structural and group modularity, with BX

contributing to the modularity objective for the protected group. The goal of the algorithm is to
form communities with high group modularity for the protected group.

DiversityDMoN: This algorithm promotes diversity by using the modified adjacency matrix
A

(λ)
div = (1 − λ)A + λAdiv, which retains only red-blue edges. The model is trained on A

(λ)
div and

learns cluster assignments by optimizing a trade-off between structural and diversity-based mod-
ularity, with Bdiv contributing to the modularity objective. The goal of the algorithm is to form
communities with high diversity.

Algorithm 2 Fairness-Aware Community Detection
1: Input: Graph G = (V,E); number of clusters k; method type M (Spectral, DMoN, Deep);

fairness objective F
2: Output: Community assignments {c1, . . . , cn}
3: Construct fairness-aware matrices based on F
4: Compute node representations H via M (spectral for Spectral, GNN for DMoN/Deep)
5: Cluster nodes into k communities using H
6: return Community assignments {c1, . . . , cn}

Loss-Based Fair Deep Community Detection
The above models enforce fairness by modifying the input adjacency matrix, which influences

the learned node representations. We now present an alternative strategy that incorporates fairness
directly into the loss function, without changing the input graph structure. We define three such
fairness-aware deep community detection algorithms, each based on a distinct group modularity
objective.

DeepDiversity: The algorithm promotes the formation of communities with high diversity within
the communities, maximizing diversity modularity Qdiv in addition to the overall modularity.
Therefore, the loss function is defined as:

LDeepDiversity = −λQdiv − (1− λ)Q + γRcollapse

where λ is a parameter that controls the tradeoff between modularity and diversity.

DeepGroup: The algorithm enhances the connectivity of a particular group (red or blue) by
increasing its group modularity Qgroup in addition to the overall modularity. Therefore, the loss
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Algorithm 3 Fair Label Propagation (FLP)
Require: Graph G = (V,E), group partition {Gb, Gr}, parameter λ.

1: Assign a unique label L(v) = v to every node v ∈ V .
2: repeat
3: for all v ∈ V do
4: for all labels ℓ do
5: Nℓ(v) = {u ∈ N(v) : L(u) = ℓ}
6: Fp(Cℓ, v) = |Nℓ(v)|; Fe(Cℓ, v) = sign(v, Cℓ)|Nℓ(v)|imb(Cℓ)
7: F (Cℓ, v) = (1− λ)Fp(Cℓ, v) + λFe(Cℓ, v)
8: end for
9: L(v) = argmaxℓ F (Cℓ, v)

10: end for
11: until No label change

function is:

LDeepGroup = −λQgroup − (1− λ)Q + γRcollapse

The parameter λ controls the tradeoff between modularity and group modularity.
In addition to enhancing intra-group connectivity or diversity, we propose a third approach

that directly incorporates fairness into the loss function. According to [16], unfairness is defined as
the difference between the group modularity scores, Unfairness = QR −QB . A network partition
is considered fair when this difference is close to zero, indicating that both groups are equally well
connected within the discovered communities.

DeepFairness: The algorithm enforces group-level modularity balance by minimizing the dif-
ference between red and blue group modularities, in addition to maximizing overall modularity.
Therefore, the loss function is defined as:

LDeepFairness = −Q + ϕ |QR −QB| + γRcollapse

where ϕ is a parameter that controls the importance of the fairness term in the loss function.
Algorithm 2 gives the outline of our fairness-aware deep clustering framework, parameterized

by the loss function. All models retain DMoNs per-epoch complexity, O(k2n+m) [26].

3.2. Fair Label Propagation
We now consider a different metric of clustering and community fairness: balance. The balance

fairness metric was first defined in the work of Chierichetti et al. [7] for fair clustering. The
definition can be directly applied to community detection, by simply substituting clusters with
communities. For the following, we will assume that we have two groups (colors) of nodes. We
will refer to them as the blue group Gb and the red group Gr. For a community C, let Cb and Cr

denote the subset of blue and red of nodes in C respectively. We define the balance of community
C as

bal(C) = min

{
|Cb|
|Cr|

,
|Cr|
|Cb|

}
∈ [0, 1] (9)

A perfectly balanced community has equal number of red and blue nodes, resulting in a balance
value of 1.

Given the definition of the balance of a community, the balance of a collection of communities
C = {C1, . . . , Ck} is defined as the average balance of the communities in C, that is, bal(C) =
1
|C|
∑

Ci∈C bal(Ci).

We propose a fair community detection algorithm that produces balanced communities, and
extends the popular Label Propagation (LP) algorithm [22].The algorithm starts by assigning each
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node v a unique label L(v), usually the id of the node. Then it iteratively updates the label of
each node, assigning the most frequent label in their neighborhood. If there are ties, the label with
the largest id is selected. The algorithm terminates when no node changes label. A community
Cℓ = {v ∈ V : L(v) = ℓ} is the set of nodes with the same label ℓ.

The Fair Label Propagation algorithm (FLP) builds upon the vanilla LP algorithm, taking a
physics-inspired view of the LP algorithm. We assume that adjacent nodes (u, v) in the graph
pull each other with force Fp(u, v) = 1. In an iteration of the LP algorithm, if Nℓ(v) is the set of
neighbors of v with label ℓ, then the community Cℓ pulls node v with force Fp(Cℓ, v) = |Nℓ(v)|.
Node v is assigned to the community Cℓ that pulls node v the strongest, that is, the most popular
community in the neighborhood of v.

To incorporate fairness (balance) in the LP algorithm, we introduce an additional electrostatic
force between connected nodes. We assign to each node v a charge qv, whose magnitude depends
on the imbalance of the community node v belongs to. We define the imbalance of a community
C as imb(C) = 1− bal(C), and set |qv| = imb(C), for the nodes in C.

The polarity of the charge depends on the majority color in the community C. Without loss
of generality, we assume that if the majority color is red (|Cr| > |Cb|), then the charge is positive.
In this case, we say that community C is a red community. If the majority color in C is blue (
|Cb| > |Cr|, community C is a blue community), then the charge is negative. Note that a single
red node has charge +1, a single blue node has charge −1, while a balanced community has charge
0.

The electrostatic force between two charged objects with charges q1 and q2 at distance d, is
governed by Coulomb’s law and it has magnitude |Fe(q1, q2)| = Kc

|q1||q2|
d2 . The force is attractive

if the charges have opposite sign, and repellent if the signs are the same. In our case, we assume
that two connected nodes (u, v) exert electrostatic force to each other. The force is directionless,
so we only care about the sign and the magnitude of the force. We assume that the nodes are at
distance 1, and we set Kc = 1. Therefore, we have: Fe(u, v) = −quqv.

When considering the label assignment of a node v, the FLP algorithm, computes the electro-
static force that the neighbors of v in the community Cℓ exert to the node. The charge of the node
v has magnitude |qv| = 1, while the charge of a neighbor u in the Cℓ community has magnitude
|qu| = imb(Cℓ). Summing over Nℓ(v), the neighbors of v in Cℓ, the electrostatic force of community
Cℓ to node v is:

Fe(Cℓ, v) = sign(v, Cℓ)|Nℓ(v)|imb(Cℓ),

where sign(v, Cℓ) = +1 if v and Cℓ are of the same color, and sign(v, Cℓ) = −1 if they have different
color.

The electrostatic force captures the effect of node v on the balance of the community Cℓ. An
attractive (positive) force means that the community Cℓ has a surplus of the opposite color of v,
and adding v to the community will improve its balance. A repellent (negative) force means that
the community has a surplus of the color of v, and adding v to the community will further increase
the imbalance of the community. The strongest the force, the more unbalanced the community
(positively or negatively).

The FLP algorithm computes the total force F (Cℓ, v) that the community Cℓ exerts on node
v, by combining the pulling and electrostatic forces, that is:

F (Cℓ, v) = (1− λ)Fp(Cℓ, v) + λFe(Cℓ, v),

where λ is a parameter of the algorithm. By combining the two forces, the algorithm aims to
combine two objectives: The quality of the output communities, which is achieved by the pulling
force, as in the vanilla LP algorithm, and the fairness of the output communities, which is achieved
by the electrostatic force. The parameter λ controls the tradeoff between community quality and
fairness. Higher values of λ place more emphasis on fairness. The value λ = 0 corresponds to the
vanilla LP algorithm, while the case λ = 1 puts all the emphasis on fairness.

Putting everything together, the FLP algorithm operates exactly as the vanilla LP algorithm,
iteratively updating the labels of the nodes, each time assigning a node v to the community Cℓ
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that exerts the strongest force F (Cℓ, v). The outline of the algorithm is shown in Algorithm 3.
The algorithm complexity remains O(Im), with m edges, and I iterations.

3.3. Clustering fairness
The problem of community detection on graphs, is essentially a clustering problem on graph

data. We can apply the physics-based idea for enforcing balance in communities for enforcing
balance in communities of numerical vectors. In this case we have as input a set of vectors
X = {x1, ..., xn}. Again we assume that the points in X are partitioned into two sets R,B,
depending on their color, that is, the value of a sensitive attribute. The goal is to partition X into
communities C = {C1, ..., Ck} such that we maximize the balance of the partition, while retaining
a high-quality clustering. We can define again the charge q(C) of a community q(Ci), and the
charge q(xi) of a single point xi.

We propose a modification of the popular k-means algorithm that incorporates balance fairness.
Recall that the k-means algorithms proceeds iteratively: at each iteration we have k centers, and
we assign each point to the closest center. Following the assignment, we find the new center of the
cluster, and we repeat until there is no change in the centers.

Following the physics-based interpretation, we think of each center c of community C as exerting
a gravitational attractive force to each point xi,

Fg(c, xi) =
1

d(c, xi)2

The point is assigned to the community that attracts it the most.
Using the same idea as before, we define the charge of the center point c of community C, to

have measure equal to the imbalance imb(C) of the community C. For a point xi the charge has
measure 1, with sign depending on the color of the point. We then define the electrostatic force
that the center c exerts to the point xi, as

Fe(c, xi) = −
q(c)q(xi)

d(c, xi)2

The total force exerted to the point by the community C is then defined as

F (C, xi) = λFe(c, xi) + (1− λ)Fg(c, xi)

The point xi is assigned to the community that pulls it the strongest.
The algorithm then proceeds iteratively, similar to k-means. We start with some centers

{c1, ..., ck}, which also have a charge q(ci). For example, ci’s may be points in X, or the cen-
ters of an initial partition (e.g., a random partition) of X. We then compute the force that each
center exerts to each point, and assign each point to the center that attracts it the most (or repels
it the least). We compute the new centers and the new charges and repeat until there is no change.

We are in the process of implementing and experimenting with this algorithm. We are also
considering further extensions and applications of the physics-based clustering for numerical data.

4. Fair Opinion Formation
An opinion-formation model defines a dynamic process by which individuals in a network form

opinions. We consider the popular Friedkin-Jonshen (FJ) opinion-formation model [14]. In this
model, individuals are nodes in a social network, and each node holds an inner and an expressed
opinion; the former is a fixed value that represents the ground beliefs of the individual. The latter
is shaped through the interactions of the individual with their social circle and their own inner
opinion. The relative effect of these two factors is governed by the stubbornness of the individual,
which takes values in [0, 1] and determines the degree to which the individuals stick to their own
opinion or listen to their social circle.
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The FJ model defines an iterative process, where at every step each node sets their expressed
opinion to be the linear combination of their inner opinion, and the (weighted) average of their
neighbors expressed opinion. At convergence, the expressed opinion of a node is influenced by
the inner opinions of all the nodes in the graph. We compute the influence matrix Q = [qij ] that
defines the influence qij that node j exerts on node i. For a node j we define the influence it has
in the network as the average of the influence it has on the nodes in the graph and its average
opinion.

As in the group fairness paradigm [11, 3], we assume that the nodes in the network are parti-
tioned into groups, according to some sensitive attribute, such as gender, race, or religion, and we
ask that influence is fairly distributed among the groups. For a group T , we define the influence
QT of the group as the sum of the influences of its members. For a given protected group T (e.g.
a minority), we say that the opinion-formation process is ϕ-fair if QT = ϕ for a given fairness level
ϕ. That is, we require that the protected group has a sufficiently strong voice in the network.

Given this definition of fairness, we consider the problem of achieving ϕ-fairness, by performing
interventions to the opinion-formation dynamics. The interventions we consider are adjustments
to the stubbornness values of the nodes. We can think of these interventions as a campaign where
we empower the individuals of the protected group to firmly stand by their opinions, while we ask
the members of the other groups to listen more to the opinions in their neighborhood.

We assume that the interventions come at a cost, which captures the effort required to adjust
the attitude (stubbornness) of the nodes. We measure this cost using the sum of squares error
between the stubbornness vectors before and after the interventions. We formally define the
Minimum Stubbornness Adjustment for Fairness (MSAF) problem as an optimization
problem where we seek to achieve fairness while minimizing the cost of the adjustments. To the
best of our knowledge, this problem definition is novel.

While our minimization objective (cost) is a convex function, the fairness constraints are non-
linear, which is the main technical challenge in MSAF. We propose two classes of algorithms for
solving this problem: one is based on iteratively linearizing the constraints; the other is changing
the stubborness of one node at a time, making it either 1 or 0, depending on whether they belong
to protected group. To make our algorithms efficient, we use perturbation theory to derive closed-
form expressions for computing the effect of modifying the stubbornness of a single node, which
we use to compute partial derivatives for the cost function.

4.1. Definitions

4.1.1. Opinion Formation Model

The model we consider is the popular Friedkin and Johnsen (FJ) model [14]. In this model, we
are given a graph with a set of n nodes V and edges E. Each node i ∈ V has a fixed inner opinion
si ∈ [0, 1] and an expressed opinion zi. The former is fixed, and a characteristic of the node itself;
the latter is the result of the opinion formation process that involves the inner opinion of the node
and the interaction of the node with the expressed opinions in its social network. Each node i is
also associated with a stubbornness value ai ∈ (0, 1), which determines how opinionated the node
is about its inner opinion, and how resistant it is to the opinions of others – higher values of ai
indicate greater stubbornness, meaning that node i places a large weight on their inner opinion
and less on the opinion of its social circle.

Each node interacts (iteratively) with its neighboring nodes in the network, adjusting its ex-
pressed opinion zi. These interactions are determined by the interaction matrix W ∈ [0, 1]n×n,
which defines a weight wij for each edge (i, j) ∈ E; wij determines the importance that node
i places on the expressed opinion of neighboring node j. W is row stochastic (i.e., each entry
W [i, j] = wij is non-negative and every row sums to 1).

In FJ, the expressed opinions are updated iteratively. At iteration t the expressed opinion of
node i becomes:

z
(t)
i = aisi +

∑
j∈Ni

wijz
(t−1)
j ,
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where Ni is the neighborhood of node i in G. Let a, s and z denote the n-dimensional vectors of
all stubbornness values, inner and expressed opinions of the nodes in V . We can write the update
equation for the FJ model in matrix-vector terms:

z(t) = As+ (I −A)Wz(t−1), (10)

where A = Diag(a) is the diagonal matrix with A[i, i] = ai and I is the n× n identity matrix. At
steady state, the expressed opinions of the nodes in V are:

z = (I − (I −A)W )
−1

As. (11)

A unique equilibrium vector z exists if: (i) matrix W is irreducible (i.e., the underlying graph is
connected) and (ii) at least one node has stubbornness ai > 0.

We now define the influence matrix Q, which is central in our setting:

Q := (I − (I −A)W )−1A. (12)

The entries of matrix Q, Q[i, j] = qij ∈ (0, 1) determine the influence that node j exerts to node i.
Note that z = Qs. Therefore, zi =

∑
j∈V qijsj . The matrix Q is stochastic, that is,

∑
j∈V qij = 1.

Therefore, the value qij determines the extent to which the opinion of node i is influenced by the
inner opinion sj of node j.

For a node j, we define the influence of node j in the network as the average influence node j
exerts to all the nodes in the network, that is,

Qj =
1

n

∑
i∈V

qij . (13)

The value Qj also defines the influence of node j to the average opinion z̄ = 1
n

∑
i∈V zi in the

network. This is an important quantity, as it captures the public opinion in the network, and it is
often targeted for maximization [15, 1]. We have that z̄ =

∑
j∈V Qjsj , thus, Qj is the influence of

the inner opinion sj to the public opinion.
Note that, Qi ∈ (0, 1). Also, since matrix Q is row-stochastic, the total influence exerted by

all nodes in the network satisfies:
∑n

i=1 Qi = 1. This highlights the zero-sum nature of influence
in the FJ model: the total amount of influence in the system remains constant and must always
sum to one. Consequently, when one node loses influence, the influence of the remaining nodes
increases by redistributing the vacated influence among themselves.

4.1.2. Opinion Fairness
Following the group fairness paradigm, we assume that the nodes in V are partitioned into two

groups: red (R ⊆ V ) and blue (B ⊆ V ) with R ∩B = ∅ and R ∪B = V . These groups are defined
according to some sensitive attribute such as gender. For the following we use G = (V,E,W,R,B)
to denote the weighted graph, where the weights are given by matrix W , and the partition of the
nodes into red and blue is given by R and B respectively.

For a group T ∈ {R,B}, we define the group influence of T as:

QT =
∑
i∈T

Qi, (14)

where Qi is the influence of node i, defined in (13). As discussed, we have that
∑

i∈V Qi = 1, and
thus QR +QB = 1.

The QR and QB values can be thought of as the strength of the voice of each group within
the network. To illustrate this point, consider the case that all nodes in each group hold the
same inner opinion value, sR and sB for groups R and B, respectively. This could model the case
where the nodes of each group are the followers of opposing political parties, or the advocates and
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opponents of a specific policy. Then z̄ = QRsR +QBsB , and the QR and QB values determine the
contribution of each group to the public opinion in the network.

For the opinion formation process to be fair, we require that the QR and QB values are suffi-
ciently balanced; otherwise, we say that the process is unfair.

Definition 3 (ϕ-Fairness) Given the input graph G = (V,E,W,R,B), and a parameter ϕ ∈
(0, 1), the FJ opinion-formation process on graph G is ϕ-fair if and only if: QR = ϕ.

Since QR + QB = 1, if QR = ϕ, then QB = 1 − ϕ. Increasing the influence of one of the groups
to achieve fairness can only be achieved by reducing by equal amount the influence of the other
group.

The definition of fairness is parameterized by the value ϕ ∈ (0, 1), which can be set to enforce
different fairness policies. For instance, we can set ϕ = 0.5 to enforce equal influence between the
two groups. Alternatively, we can enforce demographic parity fairness by setting ϕ equal to the
fraction of red nodes in the graph. Finally, if the red group is a minority or protected group, we
can also set ϕ to enforce an affirmative action policy, empowering the red group’s voice.

4.2. Minimum Stubbornness Adjustment for Fairness
We now consider the problem of achieving fairness in the opinion formation process. Consider

a graph G = (V,E,W,R,B), desired fairness ϕ and QR ̸= ϕ. Assume without loss of generality
that the network is unfair towards the red group, i.e. QR < ϕ. Our goal is to increase the influence
of the red group by performing interventions. The interventions we consider are changes in the
stubbornness of the nodes. Intuitively, we want to make the red nodes more assertive (increase
their stubbornness) and the blue nodes more receptive (decrease their stubbornness), to achieve
ϕ-fairness. However, our interventions come at a cost, which is the degree to which we change
the original stubbornness values. This cost can be thought of as the effort required to change the
attitude of the red and blue nodes. We want to achieve ϕ-fairness with minimal adjustments to
the stubbornness values.

Formally, let a = (a1, . . . , an) denote the input vector of stubbornness values and a′ = (a′1, . . . , a
′
n)

the stubbornness values after the interventions. The cost of the interventions is:

Cost(a′) =
n∑

i=1

(ai − a′i)
2. (15)

Then, we can define our optimization problem as follows.

Problem 1 [Minimum Stubbornness Adjustment for Fairness-MSAF] Assume an input
graph G = (V,E,W,R,B), and an initial stubbornness vector a = (a1, . . . , an). Given a fairness
level ϕ ∈ (0, 1), find a modified stubbornness vector a′ = (a′1, . . . , a

′
n) such that:

min
a′

Cost(a′)

subject to: QR(a
′) = ϕ

a′i ∈ (0, 1).

MSAF models the trade-off between enforcing global fairness and preserving the behavioral
tendencies of the nodes.

Although the objective function of this optimization problem is convex (15), the problem is
challenging because of the non-linearity of the fairness constraint QR(a

′) = ϕ. This constraint
depends on the influence matrix Q, which is the inverse of another matrix (12) and thus, nonlinear.

4.2.1. Tools for the MSAF problem
Assume that the stubbornness value ai of a single node is altered. The analytical expressions

for the resulting variation in the group influence QR are formalized in the following lemma. The
lemma utilizes the Sherman-Morrison formula [17].
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Lemma 1 Given an input graph G = (V,E,W,R,B) and an initial stubbornness vector a =
(a1, . . . , an), altering the stubbornness of a single node i from ai to a′i results in the following group
influence updates:

Q′
R = QR + (a′i − ai)

(
Qi

ai(1−ai)

)∑
j∈B qij

1 +
(

a′
i−ai

ai(1−ai)

)
(qii − ai)

, if i ∈ R

Q′
R = QR − (a′i − ai)

(
Qi

ai(1−ai)

)∑
j∈R qij

1 +
(

a′
i−ai

ai(1−ai)

)
(qii − ai)

, if i ∈ B,

where Qi is the initial influence of node i, and QR is the initial Red group influence; Q′
R is the

updated Red group influence after modifying the stubbornness of node i from ai to a′i.

By utilizing the result of Lemma 1, we derive the partial derivative of the group influence (QR)
with respect to the stubbornness (ai) of an individual node as follows:

∂QR

∂ai
=


Qi

ai(1−ai)

∑
j∈B

qij , i ∈ R

− Qi

ai(1−ai)

∑
j∈R

qij , i ∈ B
. (16)

We can simplify (16) by approximating the partial derivatives using the first-order Neumann
series expansion [17].

∂QR

∂ai
≈


∑
j∈B

ajwij , i ∈ R∑
j∈R

−ajwij , i ∈ B
(17)

4.2.2. Properties of the MSAF problem
Before proceeding into solving the MSAF problem, it is important to understand some of its

properties.

Feasibility of fairness. First, we we show that level of fairness ϕ can be achieved solely by
modifying the stubbornness values ai of the nodes.

Lemma 2 (feasibility) Given a graph G = (V,E,W,R,B), then for any desired fairness level
ϕ ∈ (0, 1), there always exists at least one stubbornness vector a = (a1, . . . , an) such that QR(a) =
ϕ.

Monotonicity of fairness. Then, we show that changing the stubbornness of a node in a group
has a monotonic effect on the influence of the group, that is, as the stubbornness of a node increases,
the influence of its group increases as well, and vice versa.

Lemma 3 (monotonicity) Let G = (V,E,W,R,B) be the input graph and assume node i ∈ T ,
where T ∈ {R,B}, with initial stubbornness ai. Then increasing the stubbornness of node i to
a′i > ai, the influence QT of group T monotonically increases, while the influence QT̄ of the
opposing group T̄ , monotonically decreases. Conversely, if the stubbornness of node i decreases to
a′i < ai, then QT monotonically decreases, while QT̄ monotonically increases.

4.3. Algorithms for the MSAF Problem
In this section, we present two families of algorithms for MSAF: (i) the Selective algorithms,

which iteratively adjust the stubbornness of individual selected nodes to achieve the desired level
of fairness; (ii) the Global Adjustment-GA algorithms, which frame the problem as a sequence of
convex optimization subproblems with linearized constraints.
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Algorithm 4 Selective Algorithm
Input: Interaction matrix W , initial stubbornness vector a = (a1, . . . , an), node group-
assignments, fairness target ϕ.
Output: Adjusted stubbornness values a′ s.t. QR(a

′) = ϕ.
1: Compute initial fairness: QR ← QR(a)
2: Initialize a′ ← a
3: Initialize available node list: Vavail ← V
4: if QR < ϕ then
5: while QR < ϕ do
6: Select i ∈ Vavail and remove i from Vavail
7: if i ∈ R then
8: a′i ← 1− ϵ
9: else

10: a′i ← 0 + ϵ
11: end if
12: Recompute QR ← QR(a

′)
13: end while
14: Undo last change and solve for precise a′i
15: if i ∈ B then
16: a′i ← ai

(
(QR−ϕ)(1−ai)

Qi

∑
j∈R qij−(QR−ϕ)(qii−ai)

+ 1
)

17: else
18: a′i ← ai

(
(ϕ−QR)(1−ai)

Qi
∑

j∈B qij−(ϕ−QR)(qii−ai)
+ 1
)

19: end if
20: else if QR > ϕ then
21: Same steps, but swap R with B on while loop
22: end if
23: Return: Adjusted stubbornness values a′.

4.3.1. Selective Algorithms
The general Selective algorithm incrementally modifies the stubbornness values of individual

nodes in order to steer the Red group’s influence, QR, toward the specified fairness target ϕ.
At each iteration, the algorithm selects a single node and sets its stubbornness to one of the two
extremal valueseither the minimum or the maximum {0+ϵ, 1−ϵ}depending on whether an increase
or decrease in QR is needed. Specifically, when QR < ϕ (resp. QR > ϕ), the algorithm increases
(resp. decreases) QR by either maximizing (resp. minimizing) the stubbornness of a Red node or
minimizing (resp. maximizing) that of a Blue node. This process continues until QR exceeds (resp.
goes below) the fairness threshold ϕ. At this point, the algorithm performs a final refinement step:
it revisits the last modified node and adjusts its stubbornness value to a specific intermediate level
that ensures QR = ϕ exactly.

This algorithm terminates and outputs a valied solution because of two key properties: First,
as shown in Lemma 3, altering the stubbornness of a single node results in a monotonic change
in the influence of its group. Second, Lemma 2 guarantees that, due to the continuity of QR,
an exact solution always exists within the feasible domain. The precise stubbornness value for
the final adjustment is computed via Lemma 1. The full pseudocode of the generic Selective
algorithm is shown in Alg. 4.

We consider four variants of Selective: Se-Rand, Se-Greedy, Se-NMA, and Se-SM, which differ
in the strategy used to select the next node to modify at each iteration. Se-Rand selects nodes
uniformly at random, Se-Greedy greedily selects, at each iteration, the node whose modification
yields the greatest decrease in |QR − ϕ|, using the formulas in Lemma 1. Finally, Se-NMA and
Se-SM adopt a gradient-based selection criterion: at each step, Se-NMA and Se-SM select the node
having the highest absolute value of the partial derivative ∂i =

∂QR

∂ai
. Depending on whether we

use the exact expression (16) or the approximation (17), we obtain the Se-SM and Se-NMA variants,
respectively.
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Algorithm 5 Global Adjustment-GA Algorithm
Input: Interaction matrix W , initial stubbornness vector a = (a1, a2, . . . , an), node group-
assignments, fairness target ϕ, tolerance τ .
Output: Adjusted a′ = (a′1, a

′
2, . . . , a

′
n) such that QR(a

′) = ϕ± τ .
1: Initialize: Set a′(0) ← a, t← 0
2: while |QR(a

′(t))− ϕ| > τ do
3: Compute influence matrix Q and QR(a

′(t)) = Q
(t)
R

4: Compute partial derivatives using (16) or (17)

∂i =
∂Q

(t)
R

∂a
′(t)
i

.

5: Update stubbornness values:

a
′(t+1)
i = a

′(t)
i −

Q
(t)
R − ϕ∑n
k=1 ∂

2
k

∂i.

6: Enforce box constraints: If any a
′(t+1)
i violates (0, 1):

a
′(t+1)
i =

{
1− ϵ, if a′(t+1)

i ≥ 1,

0 + ϵ, if a′(t+1)
i ≤ 0.

7: Increment iteration counter: t← t+ 1.
8: end while
9: Return: Adjusted stubbornness values a′.

4.3.2. Global Adjustment-GA Algorithms
A key observation is that MSAF is a convex optimization problem with a non-linear constraint.

The non-linearity arises from the fairness constraint QR(a
′) = ϕ, which depends on matrix inversion

in the computation of qij values. Key to the GA approach is the linearization of the constraint
using the first-order Taylor approximation of QR(a

′). Using the first-order Taylor expansion, we
can approximate QR(a

′) ≈ QR(a)+∇QR(a)·(a′−a). The resulting optimization sub-problem has a
convex objective and a linear constraint thus it is very easy to solve analytically (see Appendix ??).
The generic Global Adjustment-GA algorithm begins by solving this linearized subproblem using
the initial stubbornness vector a. It then proceeds iteratively: at each iteration t, it solves a new
linearized subproblem using the current iterate a(t), producing the updated solution a(t+1). After
each update, box constraints are enforced to ensure that all stubbornness values remain within the
interval (0, 1). From standard results in non-linear optimization [4],[21] (see also Appendix ??) we
can state that this iterative process converges to QR(a

′) = ϕ. The general GA algorithm is given
in Alg. 5.

Depending on whether we use the exact (16) or approximate (17) expression for the partial
derivative ∂i, we refer to the corresponding instantiations of the algorithm as GA-SM and GA-NMA,
respectively.

4.3.3. Computational Complexity
In both the Selective and GA algorithms, the dominant computational cost per iteration lies

in computing the influence matrix Q = B−1A, when the stubbornness values ai are updated. In
theory, the theoretical complexity of matrix inversion can be reduced to approximatelyO(n2.37) [28]
In practice, we employ standard dense solvers provided by the CuPy library, which internally rely
on LU decomposition to solve BQ = A without explicitly forming B−1. This yields a per-iteration
computational cost of O(n3), consistent with classical direct methods such as Gaussian elimination
or LU factorization [17]. The Selective algorithms exploit the fact that only a single stubbornness
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value ai is modified in each iteration. This rank-one change allows us to use the ShermanMorrison
formula to efficiently update the inverse B−1 without recomputing it from scratch. This reduces
the per-iteration cost to O(n2).

The runtime of each algorithm also depends on the number of iterations required to achieve
ϕ-fairness, which can vary considerably in practice.

5. Minimizing the cost of Pagerank fairness

Pagerank fairness was first studied by Tsioutsiouliklis et al. [25]. They assumed that the nodes
in the network are partitioned into groups, and they asked for a fair allocation of Pagerank values
between the different groups. They proposed the Locally Fair Pagerank class of algorithms, which
achieves fairness by making the transitions out of each node in the random walk fair. This locally
fair behavior of the nodes, results in overall fairness of the algorithm.

Local Pagerank Fairness is a simple and intuitive notion of fairness, but it is also particularly
invasive, since it modifies the behavior of all nodes in the network, and alters significantly the
resulting Pagerank vector. In this paper, we aim to find a set of nodes to make fair so as to
achieve fairness at the minimum cost. We consider two notions of cost. The first is the size of the
set, aiming to minimize the changes in the transition matrix of the random walk. The second is
the change in the Pagerank values of the nodes, aiming for small utility loss in the resulting fair
Pagerank vector.

We derive analytical expressions for estimating efficiently the gain in fairness, and the loss in
utility, when making a node fair. Our formulas rely on the fact that making a node fair is a rank-1
perturbation of the transition matrix, and thus we can compute the change in Pagerank without
recomputing the Pagerank vector. Using our formulas, we propose greedy algorithms for selecting
the nodes to make fair.

5.1. Definitions
In this section, we present the necessary background for the Pagerank algorithm and the defi-

nition of Pagerank fairness from [25].

5.1.1. The Pagerank Algorithm

The Pagerank algorithm [6] pioneered the use of graph structure for assessing the importance
of nodes in a graph. It was made popular through its use in the Google search engine, but it has
found several applications in other areas as well.

The algorithm takes a (directed) graph G = (V,E) as input, and produces a weight vector p,
where p(i) is the weight assigned to node i. The weight vector is computed by performing a random
walk with restarts on the graph. The random walk at each step follows one of the outgoing edges
uniformly at random with probability (1− γ), while with probability γ it jumps to a node chosen
uniformly at random according to the jump vector distribution u (usually, the uniform vector).
The Pagerank vector is the stationary distribution of the random walk.

More formally, let P denote the transition probability matrix of the random walk, when follow-
ing an outgoing link. Let di be the out-degree of node i. We have that P [i, j] = 1/di, if (i, j) ∈ E,
and 0 otherwise. For the stationary distribution of the random walk it holds that

pT = (1− γ)pTP + γuT

Solving for pT , we have that
pT = γuT (I − (1− γ)P )

−1
,

where I is the identity matrix. Let Q = γ (I − (1− γ)P )
−1. We have that pT = uTQ. The value

p(i) is the Pagerank value of node i.
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5.1.2. Pagerank Fairness

The fairness of the Pagerank algorithm was defined and studied in [25]. The work considers
a group fairness definition. Given a graph G = (V,E), they assume that the nodes in the graph
are partitioned into groups, based on a sensitive attribute such as gender or race. Following [25],
for simplicity, we assume that there are two groups of nodes, Red (R) and Blue (B), R,B ⊆ V ,
R ∩ B = ∅, R ∪ B = V . We will refer to the partition (R,B) as the group partition. We also
assume that the red group is the protected group, for which we want to guarantee fair treatment.
Abusing the notation, let p(R) denote the total Pagerank weight (probabiilty mass) allocated to
the red group. Given a parameter ϕ, the Pagerank algorithm is ϕ-fair, if p(R) = ϕ. We will refer
to the p(R) as the red pagerank. The blue pagerank is defined symmetrically.

To achieve fairness, Tsioutsiouliklis et al. [25], define the Locally Fair Pagerank class of algo-
rithms, where they adjust the transition probability matrix of the random walk, so that all nodes
in the graph transition with probability ϕ to a red node, and with probability 1−ϕ to a blue node.
We can also think of each node as distributing their Pagerank weight to the two groups in a ϕ-fair
manner. We say, that the nodes behave fairly, or that they are ϕ-fair. The jump vector u is also
made to be ϕ-fair, with u(i) = ϕ/|R|, if i ∈ R, and u(i) = (1 − ϕ)/|B| if i ∈ B. They show that
this local fair behavior results in global fairness of the stationary distribution.

5.1.3. Problem Definition
The locally fair algorithms require to modify the whole transition matrix P of the random walk

so that the transitions out of the nodes are ϕ-fair (excluding only the nodes that are already ϕ-fair).
Furthermore, the resulting Pagerank vector is considerably altered compared to the original one.
This is excessively intrusive, given also that some nodes may have transition probability to red
nodes already greater than ϕ, and they do not need to be made ϕ-fair. We consider the problem
of identifying the set of local changes that achieve fairness, with the minimum effect.

Formally, for a subset S ⊆ V of nodes, let cost(S) be the cost of making the nodes in S ϕ-fair.
Our goal is to find the set S of nodes to make fair, such that the cost cost(S) is minimized.

We consider two definitions of cost. The first, considers the number of local changes that we
need to achieve fairness. That is, cost(S) = |S|, is the number of nodes that we make ϕ-fair.
Formally, we define our problem as follows.

Problem 2 (Minimum Modification Local Fairness (MMLF)) Given a graph G = (V,E)
with group partition (R,B) and a fairness parameter ϕ ∈ (0, 1), find the smallest subset of nodes
S ⊆ V to make ϕ-fair, such that for the resulting Pagerank vector p′ it holds that p′(R) ≥ ϕ.

The next definition of cost considers the change in the resulting Pagerank vector. Let p′ denote
the Pagerank vector after making a subset of nodes fair, and let p denote the original Pagerank
vector. In [25], they define the utility loss of p′ as loss(p′) = ∥p′−p∥22, that is, the sum of squares
error between the two vectors. We set cost(S) = loss(S). Formally, we define our problem as
follows.

Problem 3 (Minimum Loss Local Fairness (MLLF)) Given a graph G = (V,E) with group
partition (R,B) and a fairness parameter ϕ ∈ (0, 1), find a subset of nodes S ⊆ V to make ϕ-fair,
such that for the resulting Pagerank vector p′ it holds that p′(R) ≥ ϕ, and the utility loss loss(p′)
is minimized.

5.2. Single Node Modification
We now study the case where we modify a single node. We first describe the different ways we

can make a node ϕ-fair, and then how to compute the effect of making a node ϕ-fair on the Pagerank
vector and the red Pagerank value p(R). We will utilize our derivations to design algorithms for
the two problems.
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5.2.1. Making a node ϕ-fair
In [25], they defined different ways of making a node ϕ-fair. We will consider two approaches

in our work. For the following we assume that we have as input a graph G = (V,E), with n nodes
and m edges, and a group partition (R,B). For a node x, we use dx to denote the outgoing degree
of x, and dRx and dBx to denote the outgoing degree of x to red and blue nodes respectively. We
use ρx = dRx /dx to denote the fraction of the neighbors of x in the red group, and βx = dBx /dx
to denote the fraction of blue neighbors. We only make ϕ-fair nodes that are ϕ-unfair to the red
group, that is, nodes x, where ρx < ϕ.

Neighborhood Locally Fair Pagerank: The first approach updates the transition matrix P ,
by redistributing the transition probability among the neighbors of the node, so that the transition
probability to the red neighbors is ϕ. Formally, to make node x ϕ-fair, in the updated transition
probability matrix P ′, we set the x row as follows:

P ′[x, y] =

 ϕ/dRx if (x, y) ∈ E, y ∈ R
(1− ϕ)/dBx if (x, y) ∈ E, y ∈ B
0 if (x, y) /∈ E

(18)

If node x has no red neighbors, then the node allocates probability ϕ uniformly at random to all
nodes in the red community R. Thus, we get

P ′[x, y] =

 ϕ/|R| if y ∈ R
(1− ϕ)/dx if (x, y) ∈ E
0 if (x, y) ̸∈ E, y ∈ B

(19)

Residual Locally Fair Pagerank: The second approach allocates probability mass (1 − δx)
uniformly to the neighbors of node x, and δx uniformly to all nodes of the red group, where δx is
such that we allocate probability mass ϕ to the red group.

Let uR denote the n-dimensional probability vector that allocates the probability mass uni-
formly over the red nodes, that is, uR(i) = 1/|R|, if i ∈ R, and zero otherwise. Let PT

x denote the
x row of the transition matrix P , and P ′T

x the x row of the updated transition matrix. We have

P ′T
x = (1− δx)P

T
x + δxu

T
R. (20)

That is, when transitioning out of node x, with probability δx we transition to a red node uniformly
at random, and with probability δx we transition to a randomly selected neighbor. To ensure
fairness, it must be that (1− δx)ρx + δx = ϕ, therefore, δx = (ϕ− ρx)/(1− ρx) = (ϕ− ρx)/βx.

5.2.2. Computing the Effect of a Single Modification
We will now derive closed-form expressions for computing the effect on fairness and utility loss

of making a single node x ϕ-fair. Our derivations rely on perturbation theory [17].
Making a node x fair involves the modification of a single row of the transition matrix P to

obtain a new transition matrix P ′. We view this change as the addition of a perturbation matrix
D to P , that is, P ′ = P +D. The matrix D is of a very specific form: all entries are zero, except
for the row x, which is a vector DT

x . We will sometimes refer to the perturbation matrix D as the
perturbation vector DT

x . The vector DT
x depends on the type of modification we perform.

For the following, let ex denote the unit vector with 1 at x and zero everywhere else (the x axis
of Rn). Note that D = exD

T
x , therefore the matrix D has rank one. We can exploit perturbation

theory [17] to prove the following Theorem for the updated matrix Q′ after changing node x. In
the following we use Qx to denote the x column of matrix Q.

Theorem 1 Let G = (V,E) be a graph, and let P be the transition probability matrix of the
Pagerank random walk on G. After the modification of node x ∈ V , with perturbation vector DT

x ,
we can compute the updated matrix Q′ as follows:

Q′ = Q+
QxDT

xQ
γ

1−γ −DT
xQ

x
. (21)
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Using the fact that pT = uTQ, and that p(x) = uTQx, we can compute the updated Pagerank
vector pT after modifying node x as follows:

p′T = pT + p(x)
DT

xQ

Zx
,

where Zx = γ
1−γ −DT

xQ
x.

Consider now the set of red nodes R. Let eR denote the vector with 1 at all entries of R and
zero everywhere else. We have that p(R) = pT eR. Therefore, the updated red Pagerank after
modifying node x is computed as:

p′(R) = p(R) + p(x)
DT

xQeR
Zx

.

We define the fairness gain gain(p′) = p′(R)− p(R) as the change in red Pagerank after changing
node x. We have that:

gain(p′) = p(x)
DT

xQeR
Zx

. (22)

We can also compute the utility loss of p′ with respect to vector p, as follows:

loss(p′ | p) = p2(x)
∥DT

xQ∥2

Z2
x

5.2.3. The perturbation vector Dx

The vector Dx depends on the kind of modification we perform. We will now define Dx for the
different modifications we defined above. For the following, for a node x, if Nx is the (outgoing)
neighborhood of x, we use Rx ⊆ Nx to denote the set of red neighbors of node x and Bx ⊆ Nx

to denote the set of blue neighbors of node x. Recall that ρx = |Rx|/|Nx| is the fraction of red
neighbors of x, while βx = |Bx|/|Nx| is the fraction of blue neighbors of x. We assume that the
node we modify is ϕ-unfair, that is ρx < ϕ and βx > 1− ϕ for the input fairness parameter ϕ.

Neighborhood Locally Fair Pagerank: In this case, for a node x with a non-empty set of red
neighbors, Rx ̸= ∅, from Eq. (18) it follows that the perturbation vector DT

x is

DT
x =

1

dx

(
(ϕ/ρx − 1)eTRx

− (ϕ/βx)e
T
Bx

)
In simple terms, we add to the red neighbors of x (eRx

(i) = 1) transition probability 1
dx
(ϕ/ρx−1),

while we subtract 1
dx
(ϕ/βx) from the blue neighbors (eBx(i) = 1).

When node x has no neighbors (Rx = ∅, and Nx = Bx), from Equation (19), the perturbation
vector DT

x becomes:
DT

x = (ϕ/|R|)eTR − (ϕ/dx)e
T
Nx

Residual Locally Fair Pagerank: In this case, from Eq. (20), if follows directly, that

DT
x = −(δx/dx)eTNx

+ (δx/|R|)eTR

Using the appropriate Dx we can compute the updated matrix Q′, the updated vector p′, the
gain gain(p′) and the loss loss(p′), using the formulas in Section 5.2.2.

5.2.4. Understanding the fairness gain
The formulas in Section 5.2.2 do not provide sufficient intuition as what is a good node to

make ϕ-fair. To obtain such intuition we expand the formula in Eq. (22) for the fairness gain.
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Algorithm 6 Greedy-f Algorithm
Input: Graph G = (V,E), group partition (R,B), target fairness ϕ, selection function f .
Output: The set S ⊆ V of nodes to be made ϕ-fair.

1: Compute the set of candidate nodes C ⊆ V that are ϕ-unfair.
2: Compute initial matrix Q and Pagerank vector p.
3: S = ∅
4: while QR < ϕ do
5: x = argmaxx∈C f(x)
6: S = S ∪ {x}
7: C = C \ {x}
8: Compute updated matrix Q using Eq. (21)
9: Compute updated Pagerank vector p

10: end while
11: return S

Doing the computations for the Neighborhood Locally Fairness case, for a node with non-empty
red neighbors set, we obtain:

gain(p′) = p(x)

(
ϕ
ρx
− 1
) ∑

z∈Rx

Qz(R)− ϕ
βx

∑
z∈Bx

Qz(R)

γ
1−γ −

(
ϕ
ρx
− 1
) ∑

z∈Rx

Qz(x) +
ϕ
βx

∑
z∈Bx

Qz(x)
. (23)

The value Qz(x) corresponds to the entry Q[z, x] of matrix Q.
The value Qi(j) is the personalized Pagerank that node i assigns to node j. The personalized

Pagerank vector of node i is computed by performing the Pagerank random walk with jump
(restart) vector u = ei. That is, the random walk always restarts from node i. Given that
p = uQ, it follows that the row Qi is the personalized Pagerank vector of node i. Intuitively,
the value Qi(j) captures how “close” node j is to node i. Qz(R) =

∑
v∈R Qz(v) is the total

personalized Pagerank that node z assigns to the red nodes.
Equation (23) characterizes the nodes that contribute to the increase of Q(R) when made ϕ-fair.

A node is a good selection if it has high Pagerank p(x), so that it has a lot of weight to redistribute.
The red neighbors in Rx should be close to other red nodes (high Qz(R)), while blue neighbors in
Bx far from red nodes (low Qz(R)), so that the redistributed weight ends up in red nodes down the
line. The denominator says that the red neighbors of x should have higher probability of returning
to x than the blue, so that when redistributing the transition, we strengthen the Pagerank of node
x.

5.3. Algorithms
We now present our algorithms for solving the MMLF and MLLF problems. Our algorithms

follow the general outline of Algorithm 6. The algorithms take as input the graph G, the partition
(R,B) the target parameter ϕ, and a function f that determines the selection criterion, depending
on the problem we consider. They output the set S of the nodes that are made ϕ-fair.

The algorithms operate in a greedy fashion, building the solution set incrementally, each time
adding the best candidate node to the set S, according to the selection function f . For the
following let px denote the updated Pagerank vector, after making the node x ϕ-fair. We consider
the following three selection functions, that result in three different greedy algorithms:

• GreedyGain: f(x) = gain(px), the increase in the red Pagerank. This algorithm targets
the MMLF problem and tries to find the smallest set nodes that achieve fairness.

• GreedyLoss: f(x) = −δloss(px), where δloss(px) = loss(px)− loss(p), the increase in the
utility loss. This algorithm targets the MLLF problem and tries to find the set nodes with
the minimum utility loss.
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• GreedyRatio: f(x) = gain(px)/δloss(px), the ratio of fairness gain over utility loss in-
crease. This algorithm tries to strike a balance between the goals of the MMLF and the
MLLF problems, and find nodes that give high gain with low utility loss.

For each greedy algorithm, we have two variants depending on the local fairness approach we
consider (neighborhood local fairness, or residual local fairness).

Complexity: A naive implementation of our algorithms would compute the updated matrix
Q after each node modification via matrix inversion, which takes O(n2.37) time [2]. Using the
derivations from Section 5.2 we can implement the Greedy-f algorithm in time O(kn2), for
f = gain, where k = |S| is the size of the selected set,and O(kmn2) for the remaining selectors.

6. Fair k-NN Classification

6.1. Preliminaries

Let X be a (finite or infinite) set of objects. Each object x ∈ X is associated with a set of d
attributes, a(x) = (a1, . . . , ad) ∈ Rd, and a protected attribute z(x) which is either 0 or 1. Abusing
the notation we will use x to denote both the object and the numerical attribute vector a(x).
We will also use zx to denote the sensitive attribute value for x. We will sometimes refer to the
protected attribute as color, which takes values red and blue, corresponding to the values 0 and 1.
We will assume that the red color, or the value 0, is the minority, protected, or underrepresented
group for which we want to establish a fair treatment.

We also assume that each point x ∈ X is associated with a class label, c(x). We assume that the
class label also takes values 0 and 1. We assume that class 1 corresponds to a positive outcome for
the point x, while class 0 to a negative outcome. Using the class labels we can train a classification
model on a subset of X , that can be used for predicting the class labels of new points. In this work
we will consider the k-NN classification model. We will study the fairness of the k-NN model.

We assume the presence of three sets T ,V,S ⊂ X : The set T is the training set that we will
use for training the classification model. The set V is the validation set that will be used for
calibrating the model to achieve fairness. The set S is the test set that will be used for testing the
fairness and accuracy of the fair model. We will often assume that the sets T ,V,S are drawn from
an unknown random distribution D over X .

LetMT
k be the k NN-model, trained on training data T . We will sometimes omit the subscript

and/or superscript when they are implied. The k-NN model is a lazy-learner, or a non-inductive
classifier, since it uses the training data directly to classify new instances rather than creating
an inductive model. Specifically, during training, the appropriate structures are created so that
given a new point x ∈ X , we can retrieve the set Nx,k ⊂ S with the k nearest neighbors of x in
T , according to some distance metric d defined over X . We will assume that d is the Euclidean
distance over the numeric vectors representing the objects in X . The model produces a class label
y(x) for a point x, which is the majority of the class labels of the points in Nx,k. For simplicity,
we will assume that k is odd, so the majority is well defined. Other ways of dealing with ties are
also possible.

The goal is to study fairness of the k-NN classification model. There are several definitions of
classification fairness in the literature [27, 3]. These definitions take into account the predicted class
labels, the actual labels, and the sensitive attribute value, and rely on certain ratios that should
take a “fair” value. In this work we will consider the Demographic Parity fairness. Let P (y(p) =
1|z(p) = b) be the ratio of the test instances of type b that take a positive label (assumed to be
desired output). Demographic Parity requires that P (y(p) = 1|z(p) = 0) ≈ P (y(p) = 1|z(p) = 1).
Equivalently, let ∆DP = P (y(p) = 1|z(p) = 0) − P (y(p) = 1|z(p) = 1) denote the fairness deficit.
We want to have ∆DP ≤ ϵ. Intuitively, demographic parity requires that both types of objects have
equal probability of receiving a positive outcome. For example, if the sensitive attribute is gender,
and the class label denotes a positive or negative hiring decision, demographic parity requires that
both men and women have equal probability of being hired.
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Relaxing the idea of demographic parity, we can also define a version of fairness, where we only
focus on the protected group (the red group in our case). In this case, given a parameter ϕ, we
require that P (y(p) = 1|z(p) = 0) ≥ ϕ. This corresponds to cases where we want some sort of
affirmative action policy, where at least a fraction ϕ of the members of the protected group receive
a positive treatment.

6.2. Problem Definitions
The goal is to change the k-NN classifier to make it fair. Given that k-NN is not an inductive

classifier, we can make k-NN fair only by altering the training data T . We consider two types of
alterations to the training set T . The first, is to flip the labels of some of points in T . The second
is to remove some of points in T . Other alterations could also be considered, such as adding or
displacing points in the dataset.

We will achieve fairness by increasing the number of positive decisions for the protected (red)
group (rather than decreasing the positive outputs for the non-protected (blue) group). Therefore,
any alterations should focus on the negatively labeled points in the training dataset. Flipping, or
removing a positive training instance cannot help us in increasing the positive outputs. We will
use T0 = {x ∈ T : c(x) = 0} to denote the negatively labeled part of the training set. These are
the points that our alterations will target.

The k-NN model is trained on the training set T . The fairness of the model MT
k is measured

on the validation set V. The goal is to perform alterations on the training set T , to obtain a new
training set T ′, such that the model MT ′,k satisfies some fairness requirement.

We will now give two generic problem definitions that we will specify further later on.

Problem 4 (Min-Alterations:) Given a training set T , and the corresponding model MT ,k,
perform the minimum set of alterations on T , such that the model MT ′

k on the altered training set
is fair on validation set V.

Problem 5 (Budgeted-Alterations:) Given a training set T , and the corresponding model
MT

k , and a budget of alterations B, perform B alterations on T , such that the model MT ′

k on the
altered training set maximizes the fairness gain on validation set V.

Fairness is defined with respect to the positive decisions for the protected and non-protected
groups on the validation set V. For the following let RPRV(M) denote the fraction of red (pro-
tected) group points in V that receive a positive outcome by model M Red Positive Ratio), and
BPRV(M) to denote the corresponding ratio for the blue (non-protected) group. We will use sim-
ply RPR (BPR), to denote the red (blue) positive ratio for the model MT

k , and RPR′ (BPR′),
to denote the red (blue) positive ratio for the modelMT ′

k . The fairness deficit is defined ∆DP and
∆′

DP respectively.
Depending on the type of alteration we consider, and the fairness definition we employ, (demo-

graphic parity (DP), or ϕ-parity, ϕP ), we obtain the following eight problem definitions.

Problem 6 (Min-Flip-ϕP :) Given a training set T and the corresponding model MT
k , find the

smallest set of points S ⊂ T0 to flip, such that the RPR′ ≥ ϕ.

Problem 7 (Budgeted-Flip-ϕP :) Given a training set T and the corresponding model MT
k ,

and a budget B, find a subset of B points S ⊂ T0 to flip, such that the RPR′ is maximized.

Problem 8 (Min-Flip-DP:) Given a training set T and the corresponding model MT
k , find the

smallest set of points S ⊂ T0 to flip, such that the ∆′
DP ≤ ϵ.

Problem 9 (Budgeted-Flip-DP:) Given a training set T and the corresponding model MT
k ,

and a budget B, find a subset of B points S ⊂ T0 to flip, such that the fairness gain ∆DP −∆′
DP

is maximized.
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Problem 10 (Min-Remove-ϕP :) Given a training set T and the corresponding modelMT
k , find

the smallest set of points S ⊂ T0 to remove, such that the RPR′ ≥ ϕ.

Problem 11 (Budgeted-Remove-ϕP :) Given a training set T and the corresponding model
MT

k , and a budget B, find a subset of B points S ⊂ T0 to remove, such that the RPR′ is maximized.

Problem 12 (Min-Remove-DP:) Given a training set T and the corresponding modelMT
k , find

the smallest set of points S ⊂ T0 to remove, such that the ∆′
DP ≤ ϵ.

Problem 13 (Budgeted-Remove-DP:) Given a training set T and the corresponding model
MT

k , and a budget B, find a subset of B points S ⊂ T0 to remove, such that the fairness gain
∆DP −∆′

DP is maximized.

6.3. Algorithms

We now consider algorithmic solutions for our problems. For the following let VR = {x ∈ V :
z(x) = 0} denote the red (protected) group points in V, and V−

R = {x ∈ VR : y(x) = 0} denote
the protected group points in V that receive a negative decision by the model MT

k . The set V+
R

contains the positively classified instances in VR. The values VB , V−
B V

+
B are defined similarly.

When we need to specify the model used for the classification, we will use V−
R (M). We will also

use M′ to denote the model MT ′

k .
The first observation is that the alterations in the training set we consider, can only have a

positive effect on the classification results. That is, when flipping or removing a negative point
from T0, we can only move points from V−

R to V+
R , and from V−

B to V+
B , and never the other way

round. Therefore, the alterations monotonically increase RPR and BPR.
When looking at ϕP -fairness, we define the gain of an alteration as the increase in RPR which

is essentially defined by the increase in the size of V+
R , that is, the number of red points in the

validation set that were classified as negative, which are now classified as positive. Formally,
the gain for an alteration involving point t ∈ T0 (flipping or removing) is defined as gainR(t) =
|V+

R (M′)|−|V+
R (M)|

|VR| . Abusing the notation we also define similarly gainR(S) for a set of points S ⊆ T0.

Note that in order to achieve ϕP -fairness, we need gainR(S) ≥ θϕ, where θϕ = ϕ− |V+
R (M)|
|VR| . The

gain gainB(S) for the blue points is defined similarly.
When looking at DP -fairness, we define the gain of an alteration as the decrease of the fairness

deficit ∆(M). Formally, the gain for an alteration involving point t ∈ T0 (flipping or removing) is
defined as gain∆(t) = ∆(M) −∆(M′) = gainR(t) − gainB(t). The gain for a set of points S is
defined as gain∆(S). To achieve fairness we want gain∆(S) ≥ θDP , where θDP = ∆(M)− ϵ.

6.3.1. Flipping labels
We now consider the case where we select training points from T0 and we flip their label from

negative to positive.

The 1-NN case
When the Nearest Neighbor classifier uses only k = 1 nearest neighbor for making a decision,

then X is partitioned according to the Voronoi diagram defined by the T . The validation set V is
also partitioned accordingly, and each point x ∈ V is classified according to the label of the center
of the Voronoi cell in which it falls. For a point t ∈ T0 let Ct ⊂ X denote the Voronoi cell of t, and
R−

t = {x ∈ V−
R : x ∈ Ct} denote the set of negatively classified red points that fall in the Voronoi

cell of t, and let B−
t = {x ∈ V−

B : x ∈ Ct} denote the negatively classified blue points that fall in
the Voronoi cell of t.

Given that for any two points t, t′ ∈ T0, Ct ∩ Ct′ = ∅, the points affected by flipping a point
t ∈ T0 are independent of the flipping of any other point in T0. Therefore, the algorithm in this
case for both Min-Flip-ϕP and Budgeted-Flip-ϕP is simple: Sort the points in T0 according to
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gain (gainR or gain∆). Select the points to flip in this order until the fairness criterion has been
achieved. This algorithm is polynomial and it is optimal.

Note: We assume here that our goal is to get RPR ≥ ϕ and ∆DP ≤ ϵ, not RPR = ϕ, or
|∆DP | ≤ ϵ, so we are allowed to overshoot. Otherwise, we probably have a subset sum problem
which is NP-hard.

The k > 1 case
For the following we assume that k is odd, to avoid dealing with the ties. This problem is likely

NP-hard. For a point x ∈ V let Dk
x ⊂ T denote the k-NN neighborhood of x in the training set.

Assume that k = 3 and our dataset is such that each point x ∈ V−
R has one positive point in the

D3
x, and two negative points. To change the label of x, we need to flip at least one of the negative

points. The Min-Flip-ϕP problem then corresponds to the Min Edge Cover problem, while the
Budgeted-Flip-ϕP to a Maximum Edge Coverage problem. We could probably construct a
reduction based on this. In general we have a multi-coverage problem, which is NP-hard and does
not have a good approximation ratio. (Note: We need to have reductions for this problem, as
well as for the next cases).

We propose the following heuristic algorithm for the Min-Flip-ϕP problem. For each point
x ∈ V−

R compute the Dk
x neighborhood of x. Also compute a counter fx of the number of points

in Dk
x that need to be flipped in order for x to become positive. For each point t ∈ T0 compute

NR
t = {x ∈ V−

R : t ∈ Dk
x}, the set of negative red points affected by t. We iteratively select points

t ∈ T0 to flip. Every time we flip a point we update the counters. When a counter becomes zero
we remove the point from V−

R .
For the selection of the next point t ∈ T0 to be flipped we use the following two rules:

1. Select the point t with the largest set NR
t .

2. For each point x ∈ V−
R compute a weight wx = 1/fx. For the point t compute WR

t =∑
x∈V−

R
wx. Select the point t with maximum WR

t .

We could modify the same idea for the DP fairness. We can compute the set NB
t similar to

NR
t and select the point with the largest difference |NR

t | − |NB
t |, or compute the weight WB

t and
select the point with largest difference WR

t −WB
t . We can also use gain∆ as a guide for the point

selection.

6.3.2. Removing points
When removing a point t ∈ T0, we affect all the points that are in the neighborhood Nt of the

point t. Let x ∈ V be one such point, and let Dx be the neighbors of x sorted in increasing distance
from x. Let Kx = Dk

x denote the neighbors of x the determine the classification of x. Removing t
will result in a new neighborhood D′

x and new set K ′
x.

Since the point x is classified negatively, this means that the set Dk
x contains less than

⌈
k
2

⌉
positive training points. Let p be the order of the nearest neighbor in Dx such that Dp

x contains⌈
k
2

⌉
positive points. Let Px = Dp

x∩T0 be the negative points in Dp
x. For the point x to be classified

as positive we need to remove dx = p−
⌊
k
2

⌋
negative points from Px.

Given a collection of points S ⊆ T0 to be removed, let FR(S) = {x ∈ V−
R : Px∩S ≥ dx} be the set

of red points that will change classification. The gain for removing the set S is gainR(S) =
|FR(S)|
|VR| .

The Min-Remove-ϕP problem can now be formulated as follows: Find the smallest subset S ⊆ T
such that |FR(S)| ≥ Θϕ, where Θϕ = θϕ|VR|.

The Budgeted-Remove-ϕP can be formulated as follows: Find a subset S ⊆ T of size B,
such that |FR(S)| is maximized.

In the case of DP -fairness, we define gainB(S) =
|FB(S)|
|VB | where FB(S) is defined similarly to

FR(S). Recall that gain∆(S) = gainR(S) − gainB(S). Therefore, to maximize gain∆, we will
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find S that maximizes |FR(S)||VB | − |FB(S)||VR|. The Min-Remove-DP problem can now be
formulated as follows: Find the smallest subset S ⊆ T such that |FR(S)||VB |−|FB(S)||VR| ≥ ΘDP ,
where ΘDP = θDP |VR||VB |.

The Budgeted-Remove-DP can be formulated as follows: Find a subset S ⊆ T of size B,
such that |FR(S)||VB | − |FB(S)||VR| is maximized.

The 1-NN case We will now consider in detail the case where k = 1. In this case, to change the
classification of a point x we need to remove the full set Px of negative training points. Therefore,
FR(S) = {x ∈ V−

R : Px ⊆ S}. Note that we can view the sets Px as hyperedges of a graph defined
over the set of nodes T0. Then, the Budgeted-Remove-ϕP problem asks for a set of B nodes,
that maximizes the hyperedge density. This is the densest B-subhypergraph problem [8], which is
known to be NP-hard. The best known approximation is O(n0.7) [8].

The work in [8] shows that the densest B-subhypergraph problem can be solved optimally
in polynomial time for interval graphs, using Dynamic Programming. An interval hypergraph
H = (V,E) is a hypergraph where V ⊂ N, and the for each edge e ∈ E, there are ae, be ∈ N, such
that e = {i ∈ V : ae ≤ i ≤ be}. We can apply this algorithm for the Budgeted-Remove-ϕP
problem in the case of one-dimensional data. In this case the points in the sets T and V are numbers
on the real line. Let U = T ∪ V . We sort U in increasing order, and map each real number x to a
natural number η(x), where η(minU) = 1 and η(maxU) = |U |. Let V = η(U) = {η(x) : x ∈ U}.
For a value x ∈ V , let η(Px) = {η(y) : y ∈ Px} and E = {η(Px) : x ∈ V}. The pair H = (E, V )
defines a hypergraph, since the values in Px are values closest to x until a negatively labeled value
is found.

The Min-Remove-ϕP problem can be mapped to the minimum k-union problem (min-k-
union) [8]. Let S = {S1, . . . , Sm} be a family of m sets over a universe of n items, and let k
be an integer parameter. The min-k-union problem asks for a family of k sets C ⊆ S such that
|
∪

Sj∈C §j | is minimized. For our problem, k is the required points in V−
R that we need to make

positive so that we have fairness. The collection S = {Px : x ∈ T0} is the collection of the Px sets.
The union of the selected Px’s is the set of training points that need to be removed to achieve
ϕ-parity.

The min-k-union problem is NP-hard. There is a O(
√
m)-approximation algorithm [8], which

was improved to O(m1/4+ε)-approximation [9]. There is also a known m1/4+ε-approximation lower
bound [9].

Given the hardness of the problem, we plan to explore the heuristic we described for the Flipping
case to the Removal case as well. For each point t ∈ T0, for each x ∈ V−

R , we can compute the
fraction of the (current) Px that the point corresponds to. Summing over all points in V−

R , we
obtain the weight of the point t. We can then greedily remove points until we achieve fairness.

7. Conclusion - State of Affairs
In this report we defined algorithms removing bias and achieving fairness in different Machine

Learning and Data Mining problems. Specifically, we designed fair algorithms for the following
problems:

1. Community detection and clustering: We have implemented and published our algo-
rithms for modularity-fair community detection [16] and fair label propagation [23]. We are
in the process of exploring extensions of these algorithms in different settings. The algorithms
for modularity fair spectral and deep community detection algorithms have been submitted
for publication to ICDM 2025. We are in the process of implementing and experimenting
with physics-based algorithms for clustering numerical data.

2. Opinion formation processes: We have implemented and experimented with the algo-
rithms for achieving fairness in opinion formation, and we have submitted a paper for pub-
lication to ICDM 2025.

3. Pagerank: We have implemented and experimented with with the algorithms for achieving
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Pagerank fairness at minimum cost, and we have submitted a paper for publication to KDD
2026.

4. k-NN classification: We are currently in the process of implementing and experimenting
with the heuristics for achieving fairness in k-NN classification. There is an implementation
for the case of flipping labels, and we are working on an implementation for the case of point
removal. This work is in collaboration with team member Stavros Sintos and his students.
We plan to submit a paper for publication to SIGMOD 2026.
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