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1 Introduction

The objective of the THEMIS project is to study bias and fairness in Al algorithms and machine
learning pipelines. In Deliverables D1.1 and D1.2, we surveyed existing approaches and metrics
for defining and measuring bias in tasks such as classification, clustering, community detection,
and network analysis, and we described in detail the metrics relevant to our research. In this
deliverable, we present the novel metrics and models for bias and fairness developed within the
project.

Most of the models and metrics considered in this deliverable fall under the category of group
fairness. Specifically, we assume that data instances are partitioned into groups based on the value
of a sensitive attribute, such as gender, race, or religion. Group fairness requires that these groups
are treated equitably by the algorithm. In some cases, rather than enforcing equal treatment
across all groups, we assume the existence of a protected group for which preferential treatment is
desirable. Such a group may correspond to an underrepresented minority that the algorithm aims
to support. For example, in a hiring scenario, women may constitute the protected group, with
the goal of increasing their representation among the selected candidates. Most of the fairness
notions we consider fall under the broader category of representation fairness, which requires that
protected groups are adequately represented in the algorithm’s output.

The contributions of this deliverable span the following directions:

¢ Classification and Counterfactual Generation: We propose a novel measure of classi-
fication bias that relies on the burden of counterfactual explanations generation, as well as a
measure of fairness for counterfactual generation.

¢ Community Detection: We introduce new metrics for community fairness based on group
connectivity and modularity.

¢ Opinion Formation: We propose a novel notion of fairness for opinion formation processes
based on influence.

e k-core: We propose a novel measure of fairness for the graph k-core.

¢ Network Homophily: We conduct an LLM-agent—based simulation to understand and
model the emergence of homophily in social networks.

The rest of the report is structured as follows. In Section 2 we present our fairness metric
based on counterfactual burden. In Section 3 we present our novel fairness metrics for community
detection. In Section 4 we present a novel metric for opinion formation fairness. In Section 5 we
present metrics for measuring the fairness of the graph k-core. In Section 6 we present a simulation
for modeling network homophily. Finally, Section 7 concludes the paper.



2 Counterfactual Generation and Classification bias

In this section, we present a novel measure for classification bias, via the use of counterfactual
explanations, and a methodology for introducing fairness in counterfactual explanations. This
work was published in ICDM 2024 [19]. The paper was selected as one of the best-ranked papers
of ICDM 2024, and an extended version of the work was published in Knowledge and Information
Systems (KAIS) [21].

Counterfactual explanations help us understand opaque machine learning (ML) models by ex-
ploring ’what-if’ scenarios for individual instances [13]. The word counterfactual may be used as
a noun to refer to the instances that are counterfactual points themselves, or as an adjective to
describe the points, the explanations, or the reasoning itself. We will use the shorthand CF to
abbreviate the word “counterfactual”. Given a dataset and a trained classifier that maps input
instances to class labels, CF explanations can highlight the relevant feature value changes for an
instance of interest that would result in an alternative predicted class label [16, 26, 13]. Conse-
quently, a CF is also known as a recourse [15], since it suggests actions to improve the situation
of a given instance [31, 13, 16, 15, 20]. For example, CF explanations may highlight the changes
on the features of an individual (e.g., marital status, habits, education, occupation) to obtain a
positive answer on a loan application, or to move from a low-wealth to a high-wealth status [31,
15]. Usually, the closest point with the desired label is selected as a CF for the given instance [13],
since that reduces the feature changes the instance must apply to reach the desired label.

Nevertheless, with sensitive features, such as gender, race, or age, the suggested changes may
hide biases towards the sensitive groups, which are not easy to detect or measure. These biases,
if left undetected or unattended, could lead to unfair and harmful outcomes. The assessment of
model biases or algorithmic fairness through the recommendations suggested by CFs is known as
counterfactual fairness [20, 17, 2, 22]. For example, consider the fairness assessment of two com-
monly used public datasets: Adult'’ and COMPAS?. For Adult, the class label indicates whether
a person earns more than $50K/year or not, while for COMPAS it indicates whether a person
is a recidivist (a person recommitting crimes) or not. Fig. 1 illustrates the average difficulty in
achieving the desired state (i.e., high wealth or no recidivism) in the form of a measure called bur-
den [31, 15]. Burden is the distance between an instance and its closest CF, and the figure shows
its aggregated value per sensitive group. We observe a higher aggregated burden for females than
for males in wealth prediction (Fig. 1a), implying that it is harder for females to achieve higher
wealth. Moreover, we observe that it is harder for males than for females to not be recidivists
(Fig. 1b). Similarly, it is harder for non-white people to achieve higher wealth, and harder for
African-Americans to not be recidivists.

Formally, let X be a heterogeneous feature space with binary, categorical, ordinal, and con-
tinuous features. A dataset D is a collection of n pairs of (X,y) where X is a data sample (i.e.,
instantiation) of X and y is its corresponding binary class label y € {“ —7,“+7}. D is divided
into a training and a test set, denoted as Drpyqin and Dreg, respectively.

Moreover, let S C X be a set of sensitive features in X', such as sex or race. Each sensitive
feature s € S may be used to define different sensitive groups of data samples. A sensitive group of
feature s is denoted as si, where k defines a condition on that feature, which is denoted by function
cond(+). If s satisfies condition k then cond(s,k) == ‘true’. For example, sensitive feature sex may
be used to define two sensitive groups, i.e., sfemate a0d Spqle, corresponding to data samples for
which sex=="‘female’ and sez==*‘male’, respectively. Given a classifier f(-), we define the set of
false-negative test instances in sensitive group sy as:

D;"kestFN = {(X7 “ + ,’)|f(X) = %= ”,cond(s,k:),X c DTest}

For each instance X; € D* - we use a CF generator to get its CF, X/. Let d(X;, X!) denote
the distance between X; and X/, defined as a combination of the L1-norm and the LO-norm. This
is the burden incurred by instance X; in trying to attain the feature values of X/. The Accuracy

lhttps://archive.ics.uci.edu/dataset/2/adult
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Figure 1: Burden for sensitive groups (x-axis) belonging to different features (colors), showing
biases on Adult and COMPAS.

Weighted Burden(AWB) measure, introduced in [20], is the product of predictive equality (the false
negative ratio) and the average burden per sensitive group. It is calculated as follows:

X, €Dk
AWBS* — TestFN 7 1
H{(X,y) € Drest|cond(s, k), y = “+ "} ()

where the denominator is the amount of true positives in the sensitive group sx. Eq. 1 indicates
that a higher number of false negatives, or a higher distance between each instance and its CF in
the s, sensitive group, make the AWB®* burden higher.

To measure bias, we define the cost (Cfqir) in generating CFs, associated with the presence of
biases, by estimating the differences in burden between the sensitive groups. We define AWB,,;,, =
mins, AWB?®* and AWB,,,,, = max,, AWB®* as the minimum and maximum burden, respectively,
over all sensitive groups. Cfg;, is then defined as the absolute difference between these two terms:

Cfair = AWBmaz - AWBmzn (2)

A high value of Cy4, indicates a strong discrepancy in the CF burden for the different sensitive
groups. That is, there is a group for which, on average, there are cheap recourse actions for
reversing an undesirable decision, and a group for which, on average, recourse actions are expensive,
indicating unfairness and bias of the classifier in the treatment of the different groups.

This definition of bias and unfairness is simple and intuitive and lends itself to algorithmic
treatment for obtaining fair CFs. Therefore, the same measure can also be used to assess the
fairness of a collection of counterfactual explanations.

3 Community Detection Fairness

Networks capture relationships between entities across diverse domains, including social platforms,
scientific collaboration, and citation systems. In many such networks, nodes tend to form com-
munities, i.e., subsets of nodes that exhibit higher internal connectivity relative to the rest of the
network [23, 7]. These communities play a critical role in determining how information spreads
and how opinions are shaped [35, 6].



Traditional community detection algorithms aim to maximize quality, typically optimizing met-
rics that capture the intra-community connectivity compared to the inter-community connectivity.
Modularity is a commonly used such metric. However, such algorithms often neglect fairness con-
siderations. In many real-world networks, nodes carry sensitive attributes such as gender, age, or
ethnicity, which naturally partition the network into groups. Recent research in network algorith-
mic fairness has emphasized the importance of equitable treatment, particularly at the group level
[25, 29, 30]. In this work, we focus on the fairness of community detection algorithms on networks.

Most previous research on group fairness of communities asks that the representation of groups
within each community is balanced [4, 3, 18]. The balance fairness metric was described in detail
in Deliverables D1.1 and D1.2, and we consider algorithms for discovering balanced communities
and clusters (see Deliverable D3.2).

In this project, we introduce a novel fairness metric for communities that shifts the focus from
nodes to connections. We ask the key question, whether each group is equally well-connected
within each community. For example, consider a collaboration network. Do women in the network
participate in an equitable number of connections within the formed communities? The strength
of connections within each community is vital for minorities to be heard, and influence others. Our
work has been resulted in two conference publications [10, 12], and an upcoming submission to the
KAIS journal.

3.1 Modularity-based Community Detection

Given as input a network G = (V| E), the output of a community detection algorithm is a partition
of the nodes into k disjoint subsets (communities), C = {Cy,C5,..Ck}, C; €V, C; N C; = 0,
UF_,C; = V. The number of communities k may be given as input, or it may be decided by the
algorithm. The goal is to discover communities where the nodes are densely intra-connected, while
sparsely inter-connected.

Modularity measures the divergence between the number of intra-community edges and the
expected such number assuming a null model [27, 5]. The most commonly used null model is a
random graph where the expected degree of each node within the graph is equal to the actual
degree of the corresponding node in the real network. Specifically, the modularity of community
Ci, Q(C;), is defined as [27]:

1 ko Ky

where A is the adjacency matrix of G, m the number of edges in G and k,, k, the degree of
node u, and v respectively. Modularity provides a measure of how well nodes in a community are
connected with each other. Negative values indicate less connections than expected, while positive
values indicate more connections.

To define fairness, we assume that the nodes of the graph are associated with some sensitive
attribute A, such as gender, religion or race, that takes ¢ values {a1,...,a;}, which partition the
nodes of the graph into ¢ groups G = {G1,Ga,..,G:}, G; = {v € V : A(v) = a;}. In the following,
we will often refer to the attribute values, and the corresponding groups, as colors. For simplicity,
we assume two colors Red (R) and Blue (B). We will assume that the red group is the protected
or minority group, for which we want to mitigate bias.

3.2 Group Modularity fairness

Our goal is to ensure that red nodes are well connected within each community. Thus, for each
red node w in C; we take the difference between the actual number of its intra-community edges
and the expected such number. We call this measure red modularity.

As before, the expected number of connections is estimated assuming as null model a random
graph that preserves the degrees of nodes in G. Using this null model, red modularity, Q% (C;) is



defined as:
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We define similarly the blue modularity QP (C;). We refer to red and blue modularity collectively
as group modularity.

Note that if we consider the whole graph as a single community both the red and the blue
modularity are zero. In general, positive values in a community mean that the nodes with the
corresponding color are more connected in the community than expected.

We define (group) modularity unfairness by comparing the red and blue modularity.

Definition 1. For a community C; € C, the modularity unfairness of C;, u(C;), is defined as:
u(Cy) = QT(Ci) — QP (Cy).

Negative values of u(C;) indicate unfairness towards the red group meaning that the red nodes
are less well-connected within the community than the blue ones. Positive values indicate the
opposite, while a zero value indicates lack of unfairness towards any of the groups.

We also consider diversity within each community by looking at the edges that connect nodes
of different color. Let us call these edges diverse edges. Note that the expected number of diverse
edges cannot be estimated using the same null model, since we need to know the color of both
endpoints of each edge. Instead, in this case, we estimate the expected number of diverse edges
using as null model a random bipartite graph, with edges only between nodes of different color,
that preserves the degrees of the nodes in the original graph G.

For a community C;, the diversity modularity, or simply diversity, is defined as:
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If we consider the whole graph as a single community, then diversity takes a non positive value.
The larger the value of DFP the more diverse the network.

We also consider a null model which is not agnostic of the color of edge endpoints. For a node
u, let kI be the number of edges of u to red nodes and kZ be the number of edges of u to blue
nodes, kf* + kB = k,. In the following, k% and k2 are respectively called the red degree and blue
degree of node u.

We consider as null model a random graph where the expected red degree and the expected
blue degree of each node is equal to the actual red degree and blue degree of the corresponding
node in the real graph GG. Formally, let P,, be the probability of creating an edge between nodes u
and v. Let mprgr be the number of red-red edges, mgrp the number of red-blue edges and mpgpg the
number of blue-blue edges in the graph. We have that P, = k’f k:f/QmRR, for red nodes u,v € R,
P, = k:B k;B/QmBB for blue nodes u,v € B, and P,, = kB k‘R/mRB for red-blue nodes u € R and
v € B. For any node u, it holds that Y _» Py, = kX and >° _5 P, = kB.

We define the labeled red modularity Q% (C;) by taking again the difference between the actual
number of intra-community edges involving red nodes, and the expected such number, but now
considering the color (or, in general, label) of both endpoints.
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We define similarly the labeled blue modularity QP (C;). We refer to labeled red and labeled
blue modularity collectively as labeled group modularity. Again, if we consider the whole graph as
a single community both the labeled red and the labeled blue modularity are zero.

We define the labeled modularity unfairness by comparing the red and blue labeled modularity.

Definition 2. For a community C; € C, the labeled modularity unfairness of C;, ur,(C;), is defined
as:

ur(Ci) = QF(Ci) — QL (Cy).

Negative values of ur(C;) indicate unfairness towards the red group, positive values indicate
unfairness towards the blue group, and a zero value lack of unfairness.

We define labeled diversity modularity, or simply labeled diversity, as follows:

B L.R
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The labeled diversity of the whole graph is zero, while positive diversity values in a community
indicate that the community contains more diverse edges than expected.

3.3 Group-Aware Modularity Matrices

Building upon the work in [10], we now consider a similar definition of modularity fairness, and we
propose modifications of the Spectral and Deep Community Detection algorithms that incorporate
fairness.

Let A € R™*™ denote the adjacency matrix of the graph G. We partition A into four disjoint

sub-matrices:
A Arr Arp
Apr ABs

where
o Agrp: the matrix with the edges between Red nodes,
e Agrp: the matrix with the edges from Red nodes to Blue nodes,
e Apgr: the matrix with the edges from Blues nodes to Red nodes, and
e App: the matrix with the edges between Blue nodes.

Since the graph is undirected, it holds that Agrp = AE R

We now define the sub-matrices Ar, Ag, and Ag;, as follows:

_ |Arr Args | 0  Agsp _ | 0  Agrp
an=ame 5] an= ] ae=0, 8]

where
e Apg: the matrix with all edges incident to Red nodes,

e Ap: the matrix with all edges incident to Blue nodes

e Ajgiv: the inter-group adjacency matrix, capturing diversity across groups.



Given these matrices, we can define the corresponding subgraphs Gr, Gp and Gg;,. We will use
these matrices to decompose the modularity matrix, and define the clustering objectives that we
use throughout this work.

Classical modularity optimization builds upon the modularity matriz, introduced by New-
man [28]:
dd’
B=A—-—
2m

where A is the adjacency matrix, d is the degree vector with d; being the degree of node i, and m
is the number of edges in the graph.

The modularity score for the partition C = {C1,Ca,...,Ck} can be computed using the modu-
larity matrix B. Let S € {0,1}"** be the binary community assignment matrix, where Si; =1if
node ¢ € Cj, and 0 otherwise. Then, the modularity of the partition C defined by the assignment
matrix S is given by:

Q(S) = 5 TH(s BS), Q

m
where Tr(-) denotes the matrix trace [28].
We can now use the decomposition of the adjacency matrix to define the group-aware variants

of modularity defined in [10], by decomposing the modularity matrix. Specifically, we define the
red modularity matriz Br using the red adjacency matrix Ar as follows:

dpd},

BR:AR— QmR

where dp is the degree vector for the graph Gr and mpg is the number of edges in the graph Gg.
The modularity score for red group connectivity, denoted Qg, is then given by:

1
S) = — Tr(ST BgS 9
Qr(S) = 5 - Tr(S" BrS) (9)
Analogously, we define the blue modularity matriz Bg using the blue adjacency matrix Ag and
the degree vector dg of the graph Gg. We also define the diversity modularity matriz Bg;y using
the matrix Aq;y and the corresponding degree vector dgjy:

odl
Bdiv = Adiv - %
deiv
1
Qune(8) = 5 To(ST B ) (10)

These formulations allow us to measure and optimize modularity with respect to both group-
specific and inter-group connectivity patterns. By incorporating group constraints directly into the
adjacency structure, our modularity matrix variants enable fairness-aware spectral optimization,
and fairness-aware loss functions.

3.4 Multi-Group Fairness in Loss-Based Deep Models

So far, we focused on a binary sensitive attribute with two groups, red and blue, and corresponding
group-modularity scores Qr(S) and @p(S). We now extend the loss-based deep models to the
multi-group setting, where nodes may belong to more than two groups.

Let a: V — U be a sensitive attribute with |/| > 2, and let V; = {u € V : a,, = g} denote the
set of nodes in group g € U.



3.4.1 Max-Min Group Modularity

Definition 3 (Multi-group group modularity). For each group g € U, we define the group adjacency
matriz A3 by keeping all edges incident to group g:

(Ang)uv _ Auvy Zf Ay =g 0T Gy = ¢,
g 0, otherwise.

Let dJ'® be the degree vector of AJ™P and let mJ™ be the number of edges in the corresponding
subgraph. We define the group modularity matriz

dgrp (dgrp) T

9P
2myg

grp _ A9TP _
Bg _Ag

and the group modularity score of g under assignment S as

1
Qs(8) = 35— Te(STBYS).

In the binary case U = {R, B}, this recovers Qgr(S) and Qp(S5).

To measure group connectivity from a worst-case perspective, we define the minimum group
modularity:

Definition 4 (Max-min group modularity). The maz-min group modularity is defined as follows:

Qmin(8) = min Qy(S).

geu

Maximizing Q% (S) encourages partitions where even the least well connected group achieves
strong within-community connectivity.

Multi Deep Group Modularity: We extend DEEPGROUPby targeting the worst connected group,
rather than selecting a single target group. The loss function is:

£1\'IULTI DEEP GROUP MODULARITY — _Q(S) - )\Q,g;l;(s) + 'YRcollapsea

where A controls the tradeoff between overall modularity and the max—min group objective.

3.4.2 Max-Min Group Diversity

We next define a multi-group diversity objective without using pairwise group pairs. Instead, we
measure, for each group g, how well it connects to the rest of the population inside the discovered
comimunities.

Definition 5 (Group-to-rest diversity modularity). For each group g € U, we define a group-to-rest
diversity adjacency matriz Ag“’ by keeping only edges with exactly one endpoint in g:

div . Ay, Z'f(au:gAav#g) or (av:g/\au#g)v
(Ag )’U/U - .
0, otherwise.

Let dg“’ be the degree vector of A;”“ and let mgi” be the number of edges in the corresponding
subgraph. We define

div ( gdiv) T
Bdi'u :Adi'u 9 (dg )
g g

div T pdiv
~ i Q) (8) = 5, Tr(ST By S).

In the binary case, AdRi” = A% = Ay, and therefore Qgi”(S) coincides with Qgiv(.59).



Definition 6 (Max-min group diversity). The maz-min group diversity is defined as follows:

@ (S) = min QI (S).

min gell

Maximizing erff’n(S ) encourages partitions where every group has strong cross-group connec-

tivity within the communities.

Multi Deep Group Diversity: We extend DEEPDIVERSITYto the multi-group setting by maximizing
the minimum group-to-rest diversity modularity. The loss function is:

di
LMULTI DEEP GROUP DIVERSITY — *Q(S) - A II’IL;UH(S) + VRcollapsc,

where A controls the tradeoff between modularity and diversity.

3.4.3 Multi-Group Fairness

Finally, we generalize the modularity-gap notion of unfairness to more than two groups. A partition
is fair when group modularities are close to each other.

Definition 7 (Multi-group modularity-based fairness). Let

BL(S) = maxQy(S).  QUL(S) = minQ,(s).

We define the normalized multi-group modularity gap, which reports worst—best group-connectivity
disparity relative to the overall modularity, as

Q9 — QIn(S)]
Q(S) |

Ay (S)

That is, we normalize the difference between the best and worst connected groups by Q(S) to
quantify how large the disparity is compared to the strength of community structure captured by
modularity.

To report fairness as a score where higher values indicate more balanced group connectivity,
we define the multi-group fairness ratio:

Fy(S) =1—Ay(9).
For |U| = 2, this reduces to the binary modularity-gap formulation.

Multi Deep Group Fairness: We extend DEEPFAIRNESS by penalizing the gap between the best
and worst connected groups. The loss function is:

Lurrt Desp GROUP FATRNESS = _Q(S) + ¢( ;srllrgx(s) - i:ﬁl(S)) + A/RCOUEPSEV

where ¢ controls the strength of the fairness penalty.

4 Opinion Formation Fairness

An opinion-formation model defines a dynamic process by which individuals in a network form
opinions. In this part of the project, we propose a novel definition of fairness for opinion formation,
that relies on influence.



4.1 Opinion Formation Model

The model we consider is the popular Friedkin and Johnsen (FJ) model [8]. In this model, we are
given a graph with a set of n nodes V' and edges E. Each node ¢ € V has a fixed inner opinion
s; € [-1,1] and an expressed opinion z;. The former is fixed, and a characteristic of the node itself;
the latter is the result of the opinion formation process that involves the inner opinion of the node
and the interaction of the node with the expressed opinions in its social network. Each node i is
also associated with a stubbornness value a; € (0,1), which determines how opinionated the node
is about its inner opinion, and how resistant it is to the opinions of others — higher values of a;
indicate greater stubbornness, meaning that node ¢ places a large weight on their inner opinion
and less on the opinion of its social circle.

Each node interacts (iteratively) with its neighboring nodes in the network, adjusting its ex-
pressed opinion z;. These interactions are determined by the interaction matriz W € [0, 1]"*™,
which defines a weight w;; for each edge (i,7) € F; w;; determines the importance that node
i places on the expressed opinion of neighboring node j. W is row stochastic (i.e., each entry
Wi, j] = w;,; is non-negative and every row sums to 1).

In FJ, the expressed opinions are updated iteratively. At iteration ¢ the expressed opinion of
node ¢ becomes:
z,gt) =a;5; + (1 —a;) Z wijz](t_l) ,
JEN;
where N; is the neighborhood of node i in G. Let a, s and z denote the n-dimensional vectors of
all stubbornness values, inner and expressed opinions of the nodes in V. We can write the update
equation for the F.J model in matrix-vector terms:

2 = As+ (I — AWz, (11)

where A = Diag(a) is the diagonal matrix with A[i,7] = a; and I is the n x n identity matrix.
A unique equilibrium vector z exists if: (i) matrix W is irreducible (i.e., the underlying graph is
connected) and (i) at least one node has stubbornness a; > 0. At this steady state, the expressed
opinions z of the nodes in V are:

z=(1—(I—-AW) " As = Qs. (12)

We define the influence matriz Q := (I — (I — A)W)~LA, which is central to our work. The
entries of matrix @, Q[¢,j] = ¢;; € (0,1) determine the influence that node j exerts to node 4.
Note that z; = > jev 4ijSi and thus, the value ¢;; determines the extent to which the expressed
opinion z; of node 7 is influenced by the inner opinion s; of node j.

For a node i, we define the influence of node i in the network as the average influence node
exerts to all the nodes in the network:

1
Qi=— ) a- 13
- 2; ) (13)
The value @; defines the influence of node ¢ to the average opinion z = % icy i in the network.
This is an important quantity, as it captures the public opinion in the network, and it is often
targeted for maximization [9, 1, 33]. We have that z = 3", |, Q;s;, thus, Q; is the influence of the
inner opinion s; to the public opinion.

Note that the matrix @ is row-stochastic, i.e., Z]’ev qi;j = 1. Therefore, the total influence

exerted by all nodes in the network satisfies: > ; @Q; = 1. This highlights the zero-sum nature of
influence in the FJ model: the total amount of influence in the system remains constant and must
always sum to one. Consequently, when one node loses influence, the influence of the remaining
nodes increases by redistributing the vacated influence among themselves.

10



4.2 Opinion Fairness

Following the group fairness paradigm, we assume that the nodes in V' are partitioned into two
groups: red (R C V) and blue (B C V) with RN B =0 and RU B = V. These groups are defined
according to some sensitive attribute such as gender. For the following we use G = (V, E, W, R, B)
to denote the weighted graph, where the weights are given by matrix W, and the partition of the
nodes into red and blue is given by R and B respectively.

For a group T € {R, B}, we define the group influence of T as:

Qor=YqQ (14)

€T

where Q; is the influence of node 4, defined in (13). As discussed, we have that ), |, Q; = 1, and
thus Qr + Qp = 1.

The Qr and @ p values determine the strength of the voice of each group within the network
and the effect on public opinion. To illustrate, suppose all nodes in each group share the same
inner opinion, denoted sp and sp for groups R and B. Then, the public opinion is given by
Z=Qprsr+Qpsp. As Qg increases, Z shifts toward the Red group’s inner opinion sg, while larger
@B pushes it toward sg. For example, if sg = 1 and sg = —1, this simplifies to Z = Qr — @ pB.
In this case, the sign of the network public opinion is determined by the group whose influence
exceeds 0.5.

For the opinion formation process to be fair, we require that the Qr and Qg values are suffi-
ciently balanced; otherwise, we say that the process is unfair.

Definition 8 (¢-Fairness). Given the input graph G = (V, E,W, R, B), and a parameter ¢ € (0, 1),
the FJ opinion-formation process on graph G is ¢-fair if and only if: Qr = ¢.

The definition of fairness is parameterized by the value ¢ € (0,1), which enforces different
fairness policies. For instance, we can set ¢ = 0.5 to enforce equal influence between the two
groups. Alternatively, we can enforce demographic parity fairness by setting ¢ equal to the fraction
of red nodes in the graph. Finally, if the red group is a minority or a protected group, we can also
set ¢ to enforce an affirmative action policy, empowering the voice of the minority.

5 k-core fairness
In this part of the project, we consider the novel problem of fairness of the k-core of a graph. The
k-core of the graph is defined as follows [24]:

Definition 9 (k-core). Given a graph G and a positive integer k, an induced subgraph S is the
k-core of G if (i) ds(u) > k for every vertex uw € S and (ii) S is mazimal, i.e., any supergraph
S" D H cannot be a k-core.

The fairness of k-core has been studied in [34] who give the following fairness definition:

Definition 10 (Fair (k,r)-core). Given an attributed undirected graph G = (V, E, A), two positive
integers k and r, and an induced subgraph S C G. S is a fair (k,r)-core of G, if it satisfies all the
following constraints.

o Degree: for Vv € V(S),ds(v) > k.

o Fairness: for any two distinct attributes a;,a; € A, the difference in the number of vertices
with a; and a; in S is no larger than the threshold r,

o Mazimal: any supergraph of S cannot be a fair (k,r)-core.
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In our definitions of k-core fairness, we consider that the attributed graph contains only two
attributes, red and blue. We define the red neighborhood of a vertex v as NR(v) = {u|u €
N(v) and u is red}. We define the blue neighborhood of a vertex v as NB(v) = {u|u € N(v) and u
We denote by d(v) the degree of a vertex v and by dRed(v) and dBlue(v) the red and the blue
degree of a vertex v respectively, that are dRed(v) = |[NR(v)| and dBlue(v) = |[NB(v)|.

The first definition of k-core fairness we cosnider is the following:

Definition 11 (Fair (k,¢)-core). Given an attributed graph G = (V, E, A), two positive integers k
and £, and an induced subgraph S C G. S is a fair (k,{)-core of G, if it satisfies all the following
constraints.

o Degree: for Vv e V(S),ds(v) > k.

e Fairness: for every vertex v the red and the blue neighborhood in S is at least £, that is
INR(v)| > ¢ and [INB(v)| > ¢.

o Mazimal: any supergraph of S cannot be a fair (k,£)-core.

We can prove the following;:

Proposition 1. The fair (k,£)-core of a graph is unique.

Proof. Assume that there are at least two maximal fair (k,¢)-cores. Without loss of generality,
assume that there are exactly two. We show a contradiction. Let Fi, F; both be maximal subgraphs
of a graph G such that for every vertex v € F; and for every vertex u € Fy the followings hold:

e d(v) > kand [INR(v)| > ¢ and |[NB(v)| > ¢.
e d(u) >k and |[NR(u)| > ¢ and |[NB(u)| > ¢.

Let F = F1UFy. Then F; C F and Fy C F. Hence, for every vertex x € F we have d(z) > k and
INR(z)| > ¢ and |[NB(z)| > ¢. Thus, F is a maximal subgraph that satisfies the degree properties
which leads to a contradiction. O

Comparing the (k, r)-core fairness definition with the (k, £)-core fairness definition, we can prove
the following:

Proposition 2. For any fair (k, £)-core, Cy ¢, there is a fair (k,r)-core, Cy ., such that Cy ¢ C Cy, ,.

Proof. Let Ci ¢ be a fair (k,£)-core with p red and g blue vertices of a graph G. We know that
every vertex in Cj ¢ has degree at least k. Thus, defining r > |p — ¢| we have that Cj  is a fair
(k,7)-core (not maximal). A simple example that shows that Cj, ¢ is not a maximal fair (k,r)-core
is the following: Apart from C} ¢ we can consider two vertices, one blue x and one red y, of the
graph G such that each of them has at least k neighbors in C} ¢ but without loss of generality
INR(z)| < £ and |[NB(y)| < ¢. On the other hand, we can add = and y in Cy ¢ and then we
construct a larger fair (k,r)-core. O

The opposite it is not true. Let G = (BU R, E) be a complete bipartite such that every vertex
in B is blue and every vertex in R is red. Then the following holds:

Proposition 3. Given the colored complete bipartite G, there is a Fair (k,r)-core for some (fixed)
values of k and r, although there is no fair (k,£)-core for any value of €.

The second definition of k-core fairness we consider is the following:

Definition 12 (Fair (k,t)-core). Given an attributed graph G = (V, E, A), two positive integers k
and t, and an induced subgraph S C G. S is a fair (k,t)-core of G, if il satisfies all the following
constraints.

12
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o Degree: for Vv € V(S),ds(v) > k.
o Fairness: for every vertex v: | |[NR(v)| — |[NB(v)|| < t.

o Mazimal: any supergraph of S cannot be a fair (k,t)-core.

The fair (k,t)-core is not unique. Consider the graph G = (V, E) with V = {a,b,¢,d, ¢} and
E = {ab,ac,be,bd,de,de}. (G is two triangles with b the common vertex). For k = 2 and t = 1
there are two maximal fair (2,1)-cores. C1 = {a,b,c} and Cy = {b,d, e}.

6 Modeling Homophily in Social Networks

Networks play a central role in many domains, yet the principles that govern their formation are
not adequately understood. The goal of this part of the project is to understand the emergence of
homophily in Social Networks. Homophily refers to the tendency of social network users to connect
with similar users. This is a prevalent property that has been observed in several settings, when
nodes are associated with attributes. To model and understand the emergence of homophily, we
simulate the creation of a network using LLM agents. We vary the attributes of the agents and
the mechanism for the link creation and measure the network properties (including homophily).
The work was published at the AI for Computational Social Science (AI4CSS) workshop at ICMD
2025 [11].

6.1 Network Creation Algorithm

The network creation process starts with a collection of agents, with no connection between them,
that is, an empty network. Agents are assigned attributes that remain fixed throughout the process.
At each timestep, an agent selects to connect to another agent from a candidate pool of agents. For
the selection, we control the information provided to the source agent regarding the attributes of
the agents in the pool. For reciprocity, we also model cases where the target agent may reject the
connection request. Our overall goal is to understand how attributes shape edge formation and,
in turn, the evolution of connectivity, community structure, and homophily in the network.

6.1.1 Agent creation

Agents are created in the timestep ¢t = 0 of the simulation process, with no connections between
them. Each agent a € V is assigned attributes specifying its demographics and personality. Each
agent is first assigned demographic attributes drawn from predefined distributions. The three at-
tributes considered are sex, race, and age group, as summarized in Table 1, adapted from U.S.
Census Bureau American Community Survey (ACS) categories. Sex and race are drawn inde-
pendently from fixed categorical distributions that approximate population frequencies. The age
group is assigned by mapping a normal distribution over adult ages onto the buckets shown in
Table 1.

In addition to demographic attributes, each agent is assigned Big Five trait scores (OCEAN) [14,
32]: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. These traits
provide a continuous representation of individual differences in behavior and social preferences. In
our simulation, values for each trait are sampled from a truncated normal distribution in [0, 1],
independent of demographics, to ensure variation while remaining within plausible ranges.

Demographic and psychological attributes together serve as inputs for connection decisions.
Demographics ensure that population diversity is explicitly represented in the simulation, while
the Big Five traits introduce heterogeneous decision-making patterns, influencing both the number
of connections agents attempt and the likelihood of accepting or rejecting connection requests.

3See https://www.census.gov.
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Table 1: Demographic attribute values used in simulation
Attribute Values

Sex Male, Female
Race White, Black, Asian, Hispanic
Age Group 18-24, 25-34, 35-44, 45-54, 55-64, 65+

Finally, each agent a maintains a persistent rejection memory M (a) C V '\ {a} that stores the
identities of agents that declined its connection requests in the past.

6.1.2 Network creation

Let Gy = (V, E;) denote the cumulative undirected graph after timestep ¢, where V is the set
of agents and F; the set of edges where each edge is a timestamped tuple (i,j,7), i,j € V, and
T <t. At t = 0, we create n agents and assign to them fixed attributes that persist for the entire
simulation. There are no edges between them, so Fy is empty.

The process of creating connections proceeds as follows. At timestep t, each agent a initiates k
connection attempts from a candidate pool of agents. The candidate pool for agent a consists of
all second-hop (friend-of-friend) nodes, plus k nodes sampled uniformly at random, excluding the
self node a, current neighbors Ny(a), and prior rejections My (a).

Agent a maintains a persistent rejection memory M;(a) C V with the identities of agents that
rejected a in the past. If a proposes to b at step ¢t and b rejects, we update My(a) < M;(a) U {b}.
The memory records identities only and does not include time, context, or reasons. At every step
the candidate pool excludes prior rejectors.

The model selects up to k targets from the candidate pool. We use the same k for sampling
and selection.

6.1.3 Prompt design

We now provide details about the two templates we use: a selection prompt and an acceptance
prompt. Both prompts are parameterized by the current timestep ¢, the focal agent a, and the
candidate pool Ci(a).

o Selection prompt. The prompt includes: (1) a header with agent a’s own demographics
and Big Five traits (2) a list of candidates u € C¢(a) that includes an anonymized ID (for
example, U17), whether u is a friend of friend (FoF) or a random draw and any attributes,
and (3) the instruction that asks for up to k different targets from Ci(a) in a fixed output
format.

¢ Acceptance prompt. The prompt includes: (1) a header with target b’s own demographics
and Big Five traits, (2) a initiator summary that shows a’s anonymized ID (e.g., U17), whether
a is a FoF or a random draw relative to b and any attributes, and (3) the instruction that
requests a binary decision (ACCEPT or REJECT) with a one-sentence rationale. If the
decision is REJECT, b is added to M;(a) so that a does not propose to b again.

All runs use a fixed prompt template for reproducibility.

6.2 Evaluation

We examine how demographic attributes and Big Five traits shape the selection of connections. We
evaluate an agent driven process in which each agent selects a target from a candidate pool, and,
when acceptance is on, the selected target decides whether to accept the proposal. To assess the
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role of agent characteristics in link selection, we vary what is visible to the agents by revealing or
hiding demographics (age, sex, race) and Big Five traits. To evaluate the impact of reciprocity, we
toggle acceptance so that a proposed edge is added only if the target agrees. We run the selection
process in multiple timesteps to see how connections evolve.

A central finding concerns the strong emergence of homophily when demographic attributes
are visible. When agents can observe demographics, same-attribute connections increase dramati-
cally by the final snapshot: race homophily nearly doubles and age homophily triples compared to
settings where demographics are hidden. These gains are accompanied by substantially higher mod-
ularity and more fragmented community structure, indicating that demographic visibility leads to
tightly knit, demographically aligned communities with fewer cross-group links. In contrast, when
demographics are hidden, homophily remains close to baseline levels, and the resulting networks
are more mixed and less modular.

Visibility of Big Five personality traits also induces homophily, though in a more nuanced way.
When traits are visible and demographics are hidden, agents preferentially connect to others with
similar personality profiles, with the strongest effects observed for Openness and Extraversion.
Trait-driven homophily increases across all five traits, but the resulting community structure is
less segregated than in the demographic case: modularity slightly decreases, suggesting that per-
sonality similarity creates cross-cutting ties that span communities rather than reinforcing strict
partitions. When both demographics and traits are visible, trait homophily remains strong, but
demographic homophily—especially for race and age—is reduced, indicating that personality in-
formation partially counteracts demographic clustering.

Finally, reciprocity through acceptance primarily acts as a secondary filter rather than the
main driver of homophily. Enabling acceptance reduces the total number of edges and increases
modularity and separation, but it leads only to modest increases in both demographic and trait
homophily. This suggests that candidate selection, rather than acceptance, is the dominant mech-
anism shaping homophilous structure. Compared to Erd6s—Rényi and Barabasi—Albert baselines
matched for size and density, the agent-driven networks consistently exhibit higher modularity,
confirming that agent attributes and decision-making play a key role in the emergence of homophily
and community structure.

Our results have dual significance. They clarify the mechanisms that drive social network
formation and they reveal systematic preferences of current LLMs that can disadvantage groups.
Because edges arise from model decisions, these preferences become structural and translate into
visibility gaps, degree differences, and community segregation. We treat this framework as a testbed
for fairness, and will design and evaluate interventions that counter bias, including adjustments
to candidate pool composition, masking or balancing attribute visibility, calibrating acceptance
utilities, and adding exposure or degree constraints. Our goal is to design mechanisms that improve
fairness while preserving connectivity and community cohesion.

7 Conclusions

he objectives of Work Package 1 were threefold: (1) to investigate metrics used for measuring
bias and fairness across different contexts; (2) to propose new metrics for fairness and bias in
underexplored problem settings; and (3) to develop models for interpreting the emergence of bias.
In this report, we focused on the latter two objectives, presenting novel metrics for bias and fairness
as well as models for understanding how bias arises.

With respect to metrics, our contributions are the following:

o We introduce a novel metric that quantifies the cost of unfairness in counterfactual generation.
e We propose new metrics for community fairness and diversity grounded in modularity.

e We define a novel influence-based metric for fairness in opinion formation processes.

o We present alternative formulations of fair k-cores based on edge-level fairness.
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Regarding models, we investigate the emergence of homophily in social networks through an
LLM-based agent simulation framework. Our analysis demonstrates how the visibility of node
attributes influences link formation and contributes to homophily in networks.

Overall, this work lays the foundation for the design of fair algorithms and the formulation
of new research questions in responsible AI. Algorithms that optimize or leverage the proposed
metrics are developed and discussed in Deliverable 3.4.

Acknowledgements

We would like to acknowledge the contributions of Nikos Theologis and Evimaria Terzi in this
work.

References

[1] Rediet Abebe et al. “Opinion Dynamics Optimization by Varying Susceptibility to Persuasion
via Non-Convex Local Search”. In: ACM Trans. Knowl. Discov. Data (2021).

[2] Emilio Carrizosa, Jasone Ramirez-Ayerbe, and Dolores Romero Morales. “Mathematical op-
timization modelling for group counterfactual explanations” In: European Journal of Oper-
ational Research (2024).

[3] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. “Fast and Accurate Fair k-
Center Clustering in Doubling Metrics”. In: WWW. 2024.

[4] Flavio Chierichetti et al. “Fair clustering through fairlets”. In: Advances in neural information
processing systems (2017).

[5] A. Clauset, M. E. J. Newman, and C. Moore. “Finding community structure in very large
networks”. In: Phys. Rev. E 70 (6 2004).

[6] David A. Easley and Jon M. Kleinberg. Networks, Crowds, and Markets - Reasoning About
a Highly Connected World. Cambridge University Press, 2010.

[7] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3-5 (Feb. 2010),
pp. 75 174. 188N: 0370-1573.

[8] Noah E. Friedkin and Eugene C. Johnsen. “Social influence and opinions”. In: The Journal of
Mathematical Sociology 15.3-4 (1990), pp. 193-206. DOI: 10.1080/0022250X.1990.9990069.

[9] Aristides Gionis, Evimaria Terzi, and Panayiotis Tsaparas. “Opinion Maximization in Social
Networks”. In: Proceedings of the 2018 SIAM International Conference on Data Mining
(SDM). Philadelphia, PA, USA: STAM, 2013, pp. 387-395. DOT: 10.1137/1.9781611972832.
43. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611972832.43.

[10] Christos Gkartzios, Evaggelia Pitoura, and Panayiotis Tsaparas. “Fair Network Communities
through Group Modularity”. In: Proceedings of the ACM Web Conference (WWW ’25). 2025.

[11] Christos Gkartzios, Evaggelia Pitoura, and Panayiotis Tsaparas. “Modeling Network Forma-
tion with LLM Agents: The Role of Demographics and Personality”. In: Workshop on Al for
Computational Social Science (AIJCSS), IEEE International Conference on Data Mining.
2025.

[12] Christos Gkartzios, Evaggelia Pitoura, and Panayiotis Tsaparas. “Modularity-Fair Deep
Community Detection”. In: ICDM. 2025.

[13] Riccardo Guidotti. “Counterfactual explanations and how to find them: literature review and
benchmarking”. In: Data Mining and Knowledge Discovery (2022), pp. 1-55.

[14] Oliver P. John, Laura P. Naumann, and Christopher J. Soto. “Paradigm Shift to the Inte-
grative Big-Five Trait Taxonomy”. In: Handbook of Personality: Theory and Research. Ed. by
O. P. John, R. W. Robins, and L. A. Pervin. Guilford Press, 2008, pp. 114-158.

16


https://doi.org/10.1080/0022250X.1990.9990069
https://doi.org/10.1137/1.9781611972832.43
https://doi.org/10.1137/1.9781611972832.43
https://epubs.siam.org/doi/abs/10.1137/1.9781611972832.43

Amir-Hossein Karimi et al. “A survey of algorithmic recourse: contrastive explanations and
consequential recommendations”. In: ACM Computing Surveys 55.5 (2022), pp. 1-29.

Amir-Hossein Karimi et al. “Model-agnostic counterfactual explanations for consequential
decisions”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020,
pp- 895-905.

Loukas Kavouras et al. “Fairness Aware Counterfactuals for Subgroups”. In: Advances in
Neural Information Processing Systems 36 (2024).

Matthéus Kleindessner et al. “Guarantees for spectral clustering with fairness constraints”.
In: International conference on machine learning. 2019, pp. 3458-3467.

Alejandro Kuratomi et al. “CounterFair: Group Counterfactuals for Bias Detection, Mit-
igation and Subgroup Identification”. In: IEEE International Conference on Data Mining
(ICDM). 2024.

Alejandro Kuratomi et al. “Measuring the Burden of (Un) fairness Using Counterfactuals”.
In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2022, pp. 402-417.

Alejandro Kuratomi et al. “Subgroup fairness based on shared counterfactuals” In: Knowl.
Inf. Syst. 67.11 (2025), pp. 10863-10901. DOI: 10.1007/S10115-025-02555-7.

Matt J Kusner et al. “Counterfactual fairness”. In: Advances in neural information processing

systems 30 (2017).

Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets, 2nd
Ed. Cambridge University Press, 2014.

Fragkiskos D Malliaros et al. “The core decomposition of networks: Theory, algorithms and
applications”. In: The VLDB Journal 29.1 (2020), pp. 61-92.

Ninareh Mehrabi et al. “A Survey on Bias and Fairness in Machine Learning”. In: ACM
Comput. Surv. 54.6 (2022), 115:1-115:35.

Christoph Molnar. Interpretable Machine Learning: A Guide for Making black-box Models
Ezplainable. 2021. URL: https://christophm.github.io/interpretable-ml-book/limo.
html.

M. E. J. Newman. “Fast algorithm for detecting community structure in networks”. In: Phys.
Rev. E 69 (2004).

M. E. J. Newman. “Finding community structure in networks using the eigenvectors of
matrices”. In: Phys. Rev. E 74 (3 Sept. 2006), p. 036104. DOI: 10.1103/PhysRevE.74.036104.

Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. “Fairness in rankings and rec-
ommendations: an overview”. In: VLDB J. 31.3 (2022), pp. 431-458.

Akrati Saxena, George Fletcher, and Mykola Pechenizkiy. “Fairsna: Algorithmic fairness in
social network analysis”. In: CSUR 56.8 (2024), pp. 1-45.

Shubham Sharma, Jette Henderson, and Joydeep Ghosh. “CERTIFAI: Counterfactual Ex-
planations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelli-
gence models”. In: Proceedings of the AAAI/ACM Conference on Al, FEthics, and Society
(Feb. 2020). arXiv: 1905.07857, pp. 166-172. DOI: 10.1145/3375627 .3375812. URL: http:
//arxiv.org/abs/1905.07857 (visited on 03/05/2022).

Christopher J. Soto and Oliver P. John. “The Next Big Five Inventory (BFI-2): Developing
and Assessing a Hierarchical Model with 15 Facets to Enhance Bandwidth, Fidelity, and
Predictive Power”. In: Journal of Personality and Social Psychology 113.1 (2017), pp. 117-
143.

Haoxin Sun and Zhongzhi Zhang. “Opinion optimization in directed social networks”. In: Pro-
ceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium
on Educational Advances in Artificial Intelligence. AAAT'23/TAAT23/EAAT’23. AAAT Press,
2023. 1SBN: 978-1-57735-880-0.

17


https://doi.org/10.1007/S10115-025-02555-7
https://christophm.github.io/interpretable-ml-book/limo.html
https://christophm.github.io/interpretable-ml-book/limo.html
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1145/3375627.3375812
http://arxiv.org/abs/1905.07857
http://arxiv.org/abs/1905.07857

[34] Xingyu Tan et al. “Maximum Fairness-Aware (k, r)-Core Identification in Large Graphs”.
In: Databases Theory and Applications. Ed. by Zhifeng Bao et al. Cham: Springer Nature
Switzerland, 2024, pp. 273-286. 1SBN: 978-3-031-47843-7.

[35] Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Social Media Mining: An Introduction.
Cambridge University Press, 2014.

18



	Introduction
	Counterfactual Generation and Classification bias
	Community Detection Fairness
	Modularity-based Community Detection
	Group Modularity fairness
	Group-Aware Modularity Matrices
	Multi-Group Fairness in Loss-Based Deep Models
	Max-Min Group Modularity
	Max-Min Group Diversity
	Multi-Group Fairness


	Opinion Formation Fairness
	Opinion Formation Model
	Opinion Fairness

	k-core fairness
	Modeling Homophily in Social Networks
	Network Creation Algorithm
	Agent creation
	Network creation
	Prompt design

	Evaluation

	Conclusions

