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1. Introduction

The goal of the THEMIS project is to study the problem of Bias and Fairness in Al algorithms,
and Machine Learning pipelines. In Deliverable D.1.1 we specified the focus of our research to
the following areas: (1) Classification Bias and Fairness; (2) Bias in Large Language Models; (3)
Fair Clustering, with emphasis to Community Detection in Social Networks; and (4) Fairness of
Network Processes, with emphasis on Pagerank and Opinion Formation. In Deliverable D1.1 we
surveyed the different metrics employed in the literature on these four directions. In this report
we will specify in more detail the metrics that we plan to focus on in our project.

The metrics we will consider for most cases fall under the category of group fairness metrics.
That is, we will assume that our data instances are partitioned into groups, based on the value of
a sensitive attribute, such as gender, race or religion. Group fairness requires that the different
groups are treated fairly. In some cases, instead of equal treatment among all groups, we will
assume the existence of a protected group for which we want to ensure a better treatment. The
protected group may be an under-represented minority that we want our algorithm to empower.
For example, in a hiring scenario, the protected group may be women, and our goal is to increase
the percentage of women that the algorithm decides to hire. Most of the notions of fairness we
will consider fall under the general category of Representation Fairness, where we require that the
protected group is fairly represented in the output of the algorithm.

The rest of the report is structured as follows. In Section 2 we discuss the classification bias
metrics we will consider in THEMIS. In Section 3 we discuss the bias metrics we will use in THEMIS.
for evaluating LLMs. In Section4d we discuss the bias metrics used for evaluating clustering and
community detection algorithms. In Section 5 we discuss the metrics we will use for bias in network
analysis tasks. Section 6 concludes the report.

2. Classification Fairness and Bias Metrics

The study of algorithmic fairness and bias originated from the problem of classification, and
specifically the problem of binary classification [11]. A classification algorithm is trained on a
training dataset, drawn from the data distribution, for which we know the true labels (yes/no in
the case of binary classification). It learns a model for predicting the label of new unseen instances,
drawn from the same distribution. The model is deployed in practice as part of a Machine Learning
pipeline. Such pipelines are part of many modern systems, and make important decisions that affect
the lives of individuals, such as medical treatment decisions, hiring decisions, financial decisions, or
even judicial decisions. It is thus important to ensure the fairness of the classification algorithms.

Classification fairness has been studied extensively, so there is a wide variety of metrics for
measuring the bias or fairness of a classification algorithm [I]. As we have already stated in
the introduction we will focus on group-based metrics. As in Deliverable D1.1, for the following
definitions we adopt some of the notation used in [1] and [26]. We are given a dataset, where



for each data instance  we have a set of features (attributes) which are used (some of them or
all of them) for classification. The attributes include a sensitive attribute G which partitions the
instances into groups. For simplicity, we will assume two groups. That is, the attribute G takes
two values {g,g}. We will assume that the value g corresponds to the protected group, that is,
the group we want the classification algorithm to treat fairly. We will refer to the group g as the
complement group.

The data instances also have an additional attribute Y which is the class label that we want to
predict. Without significant loss of generality, we assume a binary classification task, that is, our
class label takes values {0, 1}. We assume that 1 correspond to a positive outcome (for example, a
job offer, or a loan approval) while 0 to a negative outcome. We will use Y to denote the decision
of our classification model, which is again a binary value {0, 1}.

The primary fairness definition we will consider is the output-based definition of fairness that
relies on Statistical Parity (also referred to as Demographic Parity, or Group Fairness). A
classifier satisfies statistical parity fairness if the probability that an instance receives a positive
outcome is the same for the two groups. That is,

P[Y =1|G =g] = P[Y = 1|G = g]

We will also consider a version of this definition that only considers the protected group g. In this
case, we define the protected positive ratio PPR = P[Y = 1|G = g] which is the probability that
the protected group receives a positive output. This defines the degree of fairness of the classifier.

For example, we could have a parameter ¢, and we would say that the classifier is fair if PPR > ¢.

The notion of output fairness is applicable to other algorithms as well, where some output
value of an algorithm should be equal among the different groups. For example, Demographic
Parity can be defined for other algorithms, where there is some notion of a positive output, and
the positive output should be balanced between the two groups. Similarly, PPR can be defined
for other algorithms as well. More generally, we can think of Statistical Parity as a notion of
Representation Fairness, where for a given output, we want the groups to be fairly represented
(e.g., for classification, have equal representation in the positive classification output).

The secondary goal is to study error-based definition of fairness. The metric we will consider
is the True Positive Ratio (TPR) defined as

TP

TPR= ————= =
R TP+ FN

PlY =1|Y =1]

where TP denotes the number of true positives (positive instances correctly classified as positive),
and FN denotes the number of False Negatives (negative instances incorrectly classified as posi-
tive). TP + FN is the number of positive instances (Y = 1), and TPR is the fraction of those
that are correctly classified as such. We can also think of this as the probability that the classifier
will correctly classify a truly positive instance.

3. Large Langugage Models Fairness and Bias Metrics

In D1.1, we reviewed various metrics commonly used to measure bias in LLMs, categoriz-
ing them into three groups: (a) embedding-based metrics, (b) probability-based metrics, and (c)
metrics applied to generated text. THEMIS focuses on recent generative LLMs that excel at text
generation and are at the research frontier. Since these models typically do not provide embeddings
or masked token predictions, our primary focus will be on probability-based metrics and generated
text-based metrics. However, we aim to explore approaches such as LLM2Vec® [2] which facilitate
training popular open-source LLMs on tasks like Masked Next Token Prediction (MNTP), enabling
the extraction of document embeddings. Consequently, in THEMIS we will deploy metrics from all
categories.

In addition, we plan to examine the bias in cases where LLMs are deployed in a Retrieval-
Augmented Generation (RAG) setting [15]. Measuring bias in a RAG setting requires analyzing

Thttps://github.com/McGill-NLP /llm2vec



both the retrieval and generation components. In RAG, the the output of the model is influenced
by external knowledge bases or retrieved documents, in addition to its inherent language under-
standing. Bias can arise from the internal representation of language of the model, the retrieved
content, or the interplay between the two. To assess this, we will evaluate the retrieved documents
for their alignment with or deviation from societal norms and protected attributes, and then an-
alyze how the LLM incorporates these sources into its responses. Classification, distribution, and
word embedding association metrics can be applied to both the retrieval and generation stages.
Traditional information retrieval diversity metrics [29] can also be applied to the output of the
model. Additionally, controlled experiments using predefined prompts and templates can simulate
scenarios with varied demographic or contextual elements, shedding light on biases introduced by
the retrieval process, the generation process, or their combination.

3.1. Probability-based Metrics

These metrics are derived from the predicted probabilities assigned by LLMs to tokens or
phrases given specific prompts and input templates. We will use these probabilities to assess the
bias of the LLM, by comparing the probabilities of opposing options (e.g., stereotypical vs. non-
stereotypical phrases). Although autoregressive language models like Llama are trained on next
token prediction, they can be adapted for estimating whether a sentence (or string in general)
follows another based on the log-likelihood of the tokens in the following string given the input.
Our methodology relies on the Generated String Probability (GSP) metric that we describe
below.

Generated String Probability Metric

Recent LLMs are unidirectional language models, which are trained using the Causal Language
Modeling (CLM) task. These models are able to predict the conditional probability of the next
word given the prior sequence of words. Specifically, an unidirectional LLM is trained to predict
the next token probability (NTP):

NTP(t,C) = P(t|C; 0)

where t is a candidate token to follow the context C, which consists of the tokens seen so far. ©
denotes the parameters of the model.

Given NTP we can compute the probability of any sequence of tokens T' = tyts...t given a
context C, using the chain rule over the NTPs of each token in the sequence. We define the
Generated String Probability (GSP) for a sequence T given context C' as follows:

7|
GSP(T,C) = [[NTP(t:;|C ® T<)
i=1
where T.; = t;1...t;_1 is the sequence of tokens preceding t;, and @ denotes the concatenation
operation.

We will utilize GSP as to measure biases or preferences of the LLMs. Our methodology is as
follows: Depending on the task at hand, we create an appropriate input context C', and a collection
S ={951, 95, ..., S} of candidate completions for the input context. We then compute GSP(S;, C)
for all candidate completions and we compare their relative probabilities. By carefully selecting
the input and the candidate completions we can elicit the preferences, biases, or “beliefs” of the
LLM, depending on the completion that it favors. We can also use this approach to “interview” the
LLM to provide us answers to questions for which it is difficult to obtain a direct response. Note
that our analysis is comparative: The goal is to evaluate which of the possible continuations are
more likely, among the ones we provide. We can also compare the GSP values for different input
contexts C = {C1, ...,Cp, } to evaluate biases with respect to different input settings.

More concretely, for the LLMs we consider the context consists of three parts C = (Pg, Py, Pr):
Ps is the system prompt, providing a setting or defining a persona; Py is the user prompt, usually
in the form of a question posed to the LLM; Pr is the response prefix that we ask the LLM to
complete.



For example, if we wanted to measure if the LLM supports the stereotype that girls do not like
STEM courses, we could set up the following task:

e Set Ps = “You are a teenage girl.”

e Set Py = “What is your favorite course in school?”

»”

e Set Pr = “My favorite course is

e Set S = {“Math”, “Physics”, “Chemistry”, “Literature”, “Arts”, “History”}

Comparing the GSP(S, Ps, Py, Pr) values for S € S for the STEM and non-STEM courses we can
evaluate whether the LLM supports the stereotype that girls do not like STEM courses. Note that
we can also change the system prompt to Ps = “You are a teenage boy.” and compare the GSP
values to evaluate how the LLM treats the different genders.

Note that any of the inputs Pg, Py, Pr may be empty. For example, to measure gender stereo-
types, we could have the following task:

e Set Ps = “You are a woman.”
e Set Pr = “When someone treats me unfairly I”

o Set S = {“cry”,“get angry”}

This setting will provide us with some information, although it has been observed that LLMs do
not perform well without a user prompt.

We can also set up a task to obtain the opinions of the LLM:

e Set Py = “Do you believe that immigrants are a threat? Pick one of the following options:
Option 1: Yes. Option 2: No”

”

e Set Pp = “I select option
o Set S={1,2}

Note that LLMs typically do not provide direct answers to such questions, as they are trained to
avoid taking a stance or expressing a (political) opinion.

A task can also be defined using only the prefix text Pr:

»”

e Set Pr = “I am a Muslim, I resolve conflicts

o Set S = {“peacefully”, “violently”}

Masked Token Methods and Pseudo-Log-Likelihood Metrics

Our proposed methodology is closely related to Masked Token Methods and Pseudo-Log-
Likelihood Metrics used for Masked Language Models (MLMs). The recent LLMs are trained
using the Causal Language Modeling (CLM) task, an autoregressive method where the model is
trained to predict the next token of a sequence of tokens. This training approach is best suited
for tasks like text generation and summarization. On the other hand, Masked Language Models
(MLMs) such as BERT [10] are trained to predict a masked token of a sentence and are bidirec-
tional, meaning that they consider both the previous and the next tokens of the masked token. A
pretrained CLM model can be further trained in an MLM task using techniques like LLM2Vec, in
which case we can use masked token metrics.

These metrics are used in by masking a word in a sentence. The MLM then predicts the missing
word. For example, the Discovery of Correlations (DisCo) [28] approach uses templates (e.g., ““[P]
is a [MASK]’’), where the [P] slot is filled with a protected attribute word and [MASK] is predicted



by the model. By taking the top-k predicted words, the metric computes the differences in the
predicted words for the different social groups represented by the protected attribute words. A
predicted word is supplied preferentially for one gender over another when the x? metric rejects a
null hypothesis of equal prediction rate.

Related to this is the Pseudo-Log Likelihood (PLL) [23, 27, 19] metric that uses the probability
of generating a token given the other words in a sentence. Formally, if © denotes the model’s
parameters, and S a sentence

PLL(S) = ) _ log P(w[S\,; ©) (1)
weS

For instance, consider the sentence, "[MASK] is a doctor.”. An MLM might predict the word
"He" with a higher probability than "She” reflecting a gender bias associating men with the
medical profession. The opposite might hold for the sentence "[MASK] is a nurse", indicating a
stereotypical association of women with nursing. Another example is "[MASK] is an engineer,"
where "He" might dominate the predictions, reinforcing the stereotype of engineering being male-
dominated.

3.2. Generated text-based Metrics

When the interaction with an LLM is limited to just the generated text and there is no access
to the probabilities and embeddings, the only way to evaluate a model for bias is by evaluating
its generated text. Usually, the models are given prompts that can contain biases and can lead
to generated text that also contains biases. The corresponding metrics include the comparison
of the distributions of bias-associated tokens, by using auxiliary classification models that classify
the generated text to the bias classes of interest, or by using lexicons that contain a set of biased
words, potentially associated with a bias score, and compute the bias score of the generated text.

Distribution Metrics

These metrics compare the distributions of tokens in the LLM generated text for the various
social groups.

Co-Occurence Bias Score [4] restricts the focus only to words that co-occur with a set of
words related to specific values of a protected attribute. Specifically, given a token w and two set
of protected attribute words P; and P, the bias score for each word in a corpus of generated texts

is computed as:

P(w|P;
Co-occurence Bias Score(w) = log PEZPI; (2)
2

For example, if the word "doctor” frequently co-occurs with male pronouns like "he” but rarely
with female pronouns like "she”, this indicates a bias associating doctors with men. Similarly,
terms like "nurse” may co-occur more often with female pronouns, reflecting gender stereotypes.
The score is zero for all words w that co-occur equally for each set of protected attribute words.

Demographic Representation [3] counts how many times a token w associated with a specific
group appears in a generated text Y. Formally, for each protected group G; associated with a set
of protected attribute words P;, and a set of generated texts Y the count is:

DR(G;)= > > C(w,Y) (3)

w,EP; YEY

where C(w,Y’) is the count of word w in the generated text Y. The vector of counts of all
groups normalized to a probability distribution, can then be compared to a reference distribution
probability like the uniform distribution, using metrics like KL-divergence, Wasserstein distance,
etc.

For instance, if in an engineering-related generated text 80% of the associated mentions involve
male pronouns while only 20% involve female pronouns, the dataset exhibits a significant gender



imbalance. Similarly, underrepresentation of minority groups in positive professional contexts can
reveal racial or cultural biases.

Classification Metrics

The classifier-based metrics use an external classifier to identify any kind of bias in the generated
output of LLMs for prompts that are similar but associated with different social groups. Most of
the reported metrics have been used in the bibliography for toxicity, but they can be generalized
for other bias classification tasks. The Expected Maximum Toxicity (EMT) [16] report the worst-
case generations over the generated texts, the Toxicity Probability (TP) [16] which reports the
probability of generating at least one toxic text with a toxicity score larger than a threshold (e.g.
0.5), and the Toxic Fraction (TF) [3] which is the fraction of generated texts that are toxic. The
above metrics can be adapted to any kind of bias classifier. Formally, considering the predicted
text Y and the classifier function ¢: Y — [0,1]:

EMT(Y) = max c(Y) (4)

TP(Y)=P (Z I(c¢(Y) > 0.5) > 1) (5)

Yey
TF(Y) = Eyey[l(c(Y) = 0.5)] (6)

For example, an LLM when prompted with a gender-sensitive topic such as profession might
generate a range of outputs with varying gender-bias levels. Using a bias-gender classifier over
the set of generated texts, the above metrics adapted for gender-bias classification can identify
the worst-case scenarios of the LLM models (EMT), the probability of generating a biased output
(TP) and the fraction of gender-biased texts (TF).

Lexicon Metrics

The lexicon-base metrics use a precompiled set of biased words with a bias score assigned to
them. These words are then taken into consideration in a word-level analysis of the generated
output. HONEST [22] measures how many top-k completions in templates prompts or generated
texts contain biased words that are in the precompiled lexicon Lex. Formally,

]I exr
HONEST(Y) = Lyer %:Yykis;; Lex(Y) .

where T is the indicator function, which returns 1 (or the bias score) if its argument is True and 0
otherwise.

For example, a template like "[GROUP] are [MASK]" (where [GROUP] is a demographic
identifier, such as "women") might reveal biases if the model disproportionately fills the mask
with negative or stereotypical terms is frequently associated with terms like "weak” or "emotional”.
This metric can be used in both MLMs (using templates) or by appropriately prompting LLMs.

3.3. Embedding-based Metrics

These metrics measure bias by computing the distances of the embeddings of neutral words to
words associated with protected attributes (e.g., the distance of the embedding of the neutral word
‘doctor’ to the embeddings of the gender-associated words ‘man’ and ‘woman’. Despite the fact
that most LLMs do not provide access to embeddings, we plan to use LLM2Vec? [2] that offers an
easy way to encode documents and get their embeddings for popular open-source LLMs.

Specifically, we plan to use the Word Embedding Association Test (WEAT) metric [6], that
measures the associations between two sets of target words representing protected attributes of

2https://github.com/McGill-NLP /llm2vec



social groups like gender (e.g., male and female names) with two sets of words that are considered
neutral attributes (e.g., nurse, doctor, beautiful, ugly). The hypothesis is that there is no difference
between the two sets of target words in terms of their similarity to the two sets of neutral attributes.
WEAT is the normalized measure that denotes how separated the two distributions are. Formally,
given the two sets of protected attribute words (P;, P») of equal size and the two sets of neutral
attribute words (N7, N3), the test statistic is :

WEAT(Py, Py, N, Ny) = Z s(wp, N1, No) — Z s(wp, N1, No) (8)
wp € Py wy € P
where
s(wp, N1, No) = meany,, en, cos(Wy, Wy,) — mean,, cn,cos(wy,,w,) (9)

where cos(w), w;,) denotes the cosine similarity of the embedding vectors of the protected word w,
and the neutral word w,,.

For example, embeddings might show a stronger similarity between "doctor” and "he” than
between "doctor” and "she”, reflecting a gender bias associating men with medicine. The opposite
might hold for "nurse” indicating stereotypical associations of nursing with women. By computing
the difference in cosine similarity between target and attribute sets, WEAT quantifies bias numer-
ically. For instance, a positive WEAT score for professions and gender pronouns would indicate
stronger male associations for professions in group N like "engineer” and "doctor” and stronger
female associations for professions in group Ny "nurse” and "teacher”. This metric provides a
powerful tool to uncover and address societal biases encoded in word embeddings.

4. Clustering and Community Detection Fairness and Bias Metrics

In Deliverable D1.1 we surveyed a variety of metrics used to measure the fairness of a cluster-
ing [8]. For the following, we assume that we have as input a set of points X = {x1,xz2,..,2,}.
The output of the clustering is a partition of the points C' = {C1,Cs,..Cx}, C; € X, C; NC; =10
into k clusters. The value of k may be an input to the clustering algorithm, or it may be a value
decided by the algorithm. We assume that the input points X = {1, 9, ..,z,} are partitioned
into m groups (colors) G = {g1,92,.-9m}, 9i € X, g; N g; = 0, as defined by protected attributes.

For simplicity, we will assume that we have two groups (colors) g; and go. For a subset of points
Y C X, we use Yy, ,Y,, to denote the set of points in Y that are colored g; or gs.

The metric we will focus on is balance. The notion of balance, first defined in [9] requires that
the clustering produces clusters where the groups are equally or proportionally represented. For a
non-empty subset of points ) # Y C X, we define the balance of Y as:

Yol Yol

balance(Y') = mln{ o =2t e0,1] (10)
|Yg2 | ’ |Y91 | ’

A perfectly balanced subset would have an equal number of points from the groups ¢g; and go,

resulting in a balance value of 1. We can think of balance as a generalization of Representation

Fairness, or Demographic Parity in the case of the clustering output.

In the project, we will focus on a special case of the clustering problem, where the input is
a graph. In this case the objects we want to cluster are the nodes of the graph, and we use the
edges of the graph to guide the clustering. The clusters are often referred to as communities of the
graph, and the clustering problem as the community detection problem [13]. A good community
is one where the nodes are densely connected to each other, while sparsely connected with nodes
outside of the community.

The notion of balance is meaningful in communities as well, and we will consider fair community
detection algorithms that aim to achieve balance. We will also consider fairness for graph-specific
metrics, such as modularity [21] or betweenness centrality [12]. An interesting wrinkle in this case
is that when looking at fairness metrics, one has to take into account the group membership of the
endpoints of the edges in the graph. Our work will investigate new metrics for fairness for graphs,
inspired by the work in [20], where a novel metric of fair modularity was introduced.



5. Network Analysis Fairness and Bias Metrics

In Deliverable D1.1 we surveyed a variety of metrics used for measuring fairness in networks,
with emphasis on ranking problems (e.g., Pagerank), Random Walks, and Random Processes,
such as diffusion. The work in the project will focus exactly on these areas, that is, processes that
happen on networks, and the bias and fairness of these processes.

An important stochastic process is a random walk. Random walks are the building blocks for
a variety of algorithms. A prominent case is the Pagerank algorithm [5]. The metric used for
measuring Pagerank fairness [24] is a variation of demographic parity, or representation fairness,
where looking at the probabilities assigned to nodes in the graph, we require that at least probability
¢ is assigned to nodes of the protected group. We will consider this metric for random walk
algorithms such as Pagerank, or Node2Vec embeddings [18].

We will also consider the problem of opinion formation on networks [7]. In opinion formation
we assume that nodes on the graph hold opinions, which are numerical values, usually ranging
from 0 to 1 (or -1 to 1), with 0 denoting a fully negative opinion, and 1 denoting a fully positive
opinion. Opinions are formed via a random process on the network, where the final opinion of a
node depends on their own opinion and that of their social circle in the network. Most of theses
processes are also modeled as random walks of some type [17].

The model we will focus on is the Friedkin and Jonshen model [14], where it is assumed that
each node 7 has an internal (unchanged) opinion s; and an expressed opinion z;. The expressed
opinion is computed as the weighted average of the internal opinion of ¢ and the expressed opinions
of the neighbors of i. It can be shown that for the vector of expressed opinions z and internal
opinions s, it holds that z = @Qs, where Q = (I + L)™', and L is the Laplacian matrix of the
graph. Therefore, z; = 3, Q(i,j)s;, and Q(i,j) can be thought of as the influence that j has on
the opinion of ¢. Summing over all i, Q; = >, Q(7,j) can be thought of as the influence node j has
on the network. Using this notion of influence, we can define demographic parity fairness, where
we require the influence of the protected group to be above a specific threshold ¢.

A variety of metrics that capture different aspect of bias have been explored using the Friedkin
and Johsen model, such as polarization or disagreement (for example see the discussion in [25].
For example, polarization can be defined as the variance of the expressed opinions. These metrics
will be considered in new opinion models that we plan to investigate that combine diffusion and
opinion formation.

Finally, community detection also falls into the area of network analysis. As outlined in Sec-
tion 4, we plan to consider balance-based metrics to study fairness for community detection.

6. Conclusion

In this report we presented the metrics we will use for the evaluation of fairness and bias for
the different Machine Learning models and algorithms we will consider in THEMISOur discussion
focused on four different categories of algorithms and models: Classification, Large Language
Models, Clustering and Community Detection, and Network Analysis. For each category, we
presented the metrics we are currently working on for measuring bias and fairness, and on which
we will base our mitigation efforts.
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