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1. Introduction

The Al revolution of the past decade has led to a world where many decisions that affect human
lives are assisted by or deferred entirely to algorithmic systems trained on massive amounts of
data. These decisions may be at an individual level, ranging from simple ones, like where to dine,
which movie to watch, who to follow, what article to read, or what information to consume, to
more important ones, such as what school to apply to, what career to follow, or what treatment to
receive. Algorithms also affect decisions at organizational, institutional or societal level that have
to do with the operation of financial institutions (determining who should get a loan), judiciary
system (affecting sentencing decisions), academics (influencing admissions), or law enforcement
(e.g., face recognition systems for suspect identification).

Given the critical role that algorithms play in our lives, there is increased concern as to whether
the decisions of these algorithms are ethical and just. These concerns are not unfounded. There is
a stream of empirical evidence that suggests that algorithms may exhibit biases in their decisions.
For example, the COMPASS system, which determines the risk of recidivism, was shown to be
biased towards African-American inmates, while Google Ads was shown to be more likely to show
ads for low-paid jobs to women than men. There are several such examples, where automated
systems are shown to exhibit bias against specific groups of individuals in very diverse settings.

The term bias is a loaded term. For our purposes, following the definition in [43] we will define
bias as “the inclination or prejudice of a decision made by an Al system which is for or against one
person or group, especially in a way considered to be unfair”. On the flip side, we can also consider
the fairness of an algorithmic system, which can be generally defined as the lack of bias. These two
concepts are tightly coupled, as one excludes the other. Formally defining them for algorithmic
systems has proved to be a challenging task, that depends on the specific task and the goal of the
definition. In the following, we will survey some of the different metrics of algorithmic bias and
fairness for specific tasks of interest to the project, aligning with other relevant works [50], [29].

The report is structured as follows. In Section 2, we will present some high-level types of bias
and fairness, while in Section 3 we provide bias and fairness definitions for classification tasks,
which can be applied and extended to many different settings. In Section 4 we will review bias and
fairness metrics for Large Language Models. In Section 5, we will review bias and fairness metrics
for clustering algorithms. Finally, in Section 6 we will review bias and fairness metrics for network
analysis algorithms.

2. Overview

We now give a general overview of the different approaches in measuring bias and fairness.
Depending on the exact class of problems we consider (e.g., classification, clustering, etc), these
approaches produce different types of metrics. For the following, we consider both bias and fairness
as one, since we view one to be the flip side of the other. Fairness implies lack of bias, while bias
implies lack of fairness.



We identify the following three broad approaches in defining fairness [43, 27, 25]:

¢ Group Fairness: In group fairness, we assume that our data can be partitioned into two or
more groups. Usually, these groups are defined based on a sensitive (protected) attribute, such
as gender, race, religion, etc. Group fairness requires that the different groups are treated
equally, or proportionally to their representation in the data. In some cases, we can also define
group fairness by focusing on some protected or minority group and requiring an appropriate
treatment of that group.

e Individual fairness: The principle behind individual fairness is that similar individuals
should receive similar treatment. This approach assumes that we can define a distance or
similarity in the input space, and a corresponding distance or similarity in the output space,
and it requires that these two are related. Individual fairness focuses on individual instances
rather than groups.

e Causal fairness: Similar to group fairness, causal fairness assumes the existence of one or
more sensitive attributes, and defines fairness using causal models [44]. A commonly used
definition is Counterfactual fairness which requires that algorithmic results for an instance
remain the same when we consider a counterfactual of the instance, where the values of the
sensitive attributes have been flipped to different values. Counterfactual fairness combines
aspects from both group fairness since it assumes the existence of groups, and from individual
fairness, since it defines fairness with respect to specific instances.

In the following we will provide definitions of specific metrics that measure fairness (or bias) for
specific problems. We will consider group fairness definitions, that is, we assume that instances
are partitioned into groups based on sensitive attributes. These are the kind of definitions we are
interested in our project.

3. Classification Bias

The origins of algorithmic and machine learning fairness can be traced to the problem of
classification. Classification, in its simplest form binary classification, is a fundamental decision-
making tool, that is applied widely in several automated (or semi-automated) decision systems.
For example, classification algorithms are used for determining if someone should get a loan, if they
are eligible for parole, if they should be shown an ad, if they will receive a specific recommendation,
if they will be admitted to a specific school, etc. All these decisions affect people’s lives to a greater
or lesser extent, and therefore it is important that they are fair and unbiased.

Classification was thus one of the first tasks for which fairness was defined and quantified. The
metrics defined for classification fairness influence to a large extend the fairness metrics for other
tasks, so we begin our exposition with classification. There is a wide variety of metrics, in this
survey, we present the most commonly used ones. Most other metrics are variations of those.

For the following definitions we adopt some of the notation used in [8] and [55]. We are given
a dataset, where for each data instance z we have a set of features (attributes) which are used
(some of them or all of them) for classification. The attributes include a sensitive attribute G
which partitions the instances into groups. For simplicity, we will assume two groups. That is, the
attribute G takes two values {g, g}. We will assume that the value g corresponds to the protected
group, that is, the group we want the classification algorithm to treat fairly. We will refer to the
group g as the complement group.

The data instances also have an additional attribute Y which is the class label that we want to
predict. Without significant loss of generality, we assume a binary classification task, that is, our
class label takes values {0,1}. We assume that 1 correspond to a positive outcome (for example, a
job offer, or a loan approval) while 0 to a negative outcome. We will use Y to denote the decision
of our classification model, which is again a binary value {0,1}.

3.1. Output-based definition

The first definition we present considers only the output of the classifier.



Statistical Parity /Group fairness: A classifier satisfies statistical parity fairness if the probability
that an instance receives a positive outcome is the same for the two groups. That is,

P[Y =1|G =g] = P[Y = 1|G = g]

Statistical parity implies that overall, the fraction of instances with positive outcome from each
group will mirror the fraction in the input data. That is, if the protected group is 20% of the overall
population, then 20% of the instances that are labeled positive by the classifier will be from the
protected group g.

Statistical parity fairness is a natural notion of fairness, and the underlying intuition can be
extended to tasks beyond classification, such as ranking, recommendation, or selection. In this case
we require representation fairness, that is, that the different groups are proportionally represented
into the output of the algorithm. We will see such definitions when discussing clustering fairness,
and Pagerank fairness.

3.2. Error-based definitions
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Figure 1. Confusion matrix

The next definitions of fairness we consider take into account the errors of the classifier. Given
the true class label Y and the predicted class label Y we can create the confusion matriz, as shown in
the figure below. Given the confusion matrix, we can estimate different metrics for the performance
of the classifier. For example, the accuracy of the classifier is estimated as acc = W where N
is the total number of instances.

Another quantity of interest is the True Positive Ratio (TPR) defined as
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TPR
This is the fraction of truly positive instances (Y = 1) that are classified as positive by the model.
We can also think of this as the probability that the classifier will correctly classify a truly positive
instance. Closely related is the False Negative Ratio (FNR), which is defined as
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EFNR

Similarly, we can define the Fulse Positive Ratio (FPR) as

FP

FPR= 557N~

PlY =1]Y =]

This is the fraction of truly negative instances (Y = 0) that are mistakenly classified as positive.
We can also think of this as the probability that the classifier will incorrectly classify as positive a
truly negative instance. Closely related is the True Negative Ratio (TNR), which is defined as

TN

TNR=Fp77N ~

P[Y =0]Y =0]=1- FPR

Given the confusion matrix and the different types of error or success rates, we can define
different notions of fairness that aim to achieve equality for these error or success rates when
conditioning on the group membership.



Equal Opportunity/TPR Balance: A classifier satisfies Equal Opportunity fairness if the True
Positive Ratio (TPR) conditioned on the group membership is the same for the two groups. That
is,

PY =1Y =1,G=g]=P[Y =1]Y =1,G = j]

Note that equality of TPR also implies equality of False Negative Ratio, that is

PV =0V = 1,G = g] = PV =0}y =1,G = ]

The idea of Equal Opportunity fairness is to extend the Statistical Parity fairness to instances
that are supposed to get the positive outcome. That is, among the instances with positive true label,
the probability they get a predicted positive outcome should not depend on the group membership.
For example, in a job recruiting algorithm, the probability that a deserving male candidate gets an
offer should be the same as the probability that a deserving female candidate (e.g., with similar
qualifications) gets an offer.

Predictive Equality /FPR Balance: A classifier satisfies Predictive Equality fairness if the False
Positive Ratio (FPR) conditioned on the group membership is the same for the two groups. That
is,

PY =1Y =0,G=g]=P[Y =1]Y =0,G = ]
Note that equality of FPR also implies equality of True Negative Ratio, that is

PlY =0Y =0,G=g]=P[Y =0]Y =0,G = g]

Predictive Equality fairness looks at the flip side of Equal Opportunity, and it asks that the
errors that favor instances that do not deserve a positive outcome should be equal among the
two groups. For example, in a job recruiting algorithm, the probability that an undeserving male
candidate gets an offer should be the same as the probability that an undeserving female candidate
gets an offer.

Equalized Odds/Disparate Mistreatment: This definition combines the two definitions above.
A classifier satisfies Equalized Odds fairness if both the True Positive Ratio and the False Positive
Ratio (FPR) conditioned on the group membership are the same for the two groups. That is,

PlY =1|Y =i,G=g] = P[Y =1|Y =i,G = g], fori = 0,1

This definition requires that when making a positive (negative) decision, the fraction of deserving
instances for the two groups, and the fraction of undeserving instances for the two groups that get
this outcome are both the same for the two groups. For the recruiting algorithm, this would imply
that the algorithm has equal probability of making a correct offer to a qualified male or female
candidate, or an mistaken offer to non-qualified male or female candidate.

Predictive Parity: This definition looks at the errors that the classifier makes when predicting a
positive outcome, and requires that they are the same for the two groups. That is,

PlY =1y =1,G=g]=P[Y =1V =1,G = g]
Note that this implies that:
PY =0Y =1,G=g]=PlY =0]Y =1,G = g]

In our example, this would mean that the probability of the classifier making an error when offering
a job should be the same for both men and women.



3.3. Score-based definitions

We will also consider classifiers that instead of outputting a class label, they output a probability
score for each instance, which corresponds to the probability that the instance should get the
positive label. These scores can be used to make a binary decision (by thresholding this score), or
as the end product of the classifier.

Let S(z) denote the score of the classifier for instance x, and S the random variable with the
score. A classifier is well calibrated if the probability that an instance gets a positive outcome, when
given score s is s, for any value of s. That is,

PlY =1|S = s] = sforall, s € [0,1]

We can now define calibration fairness where we require that the classifier has similar probabilities
for each group.

Calibration Fairness: A classifier satisfies Predictive Parity fairness if
PlY =1|S=5G=g]=P[Y =1|S =5s,G = g|, forall s € [0, 1]

We can make this definition more strict by requiring that the classifier is also well-calibrated for the
two groups. That is,

PY =1|S=s,G=g]=PlY =15 =5,G = g] = s, forall s € [0, 1]

4. LLMs

In this section, we focus on bias measuring metrics that are commonly used in LLMs [29].
Specifically, we describe embedding-based, probability-based, and metrics over the generated text.

4.1. Embedding-based Metrics

These metrics measure bias by computing the distances of the embeddings of neutral words to
words that are associated with protected attributes. For example, the distance of the embedding of
the neutral word ‘doctor’ is computed over the embeddings of the gender-associated words ‘man’
and ‘woman’. Despite the fact that most LLMs do not provide access to embeddings, the authors
in [57] propose efficient and effective methods to create them by using as training data synthetic
data generated by the LLMs.

Word Embedding Metrics.

The Word Embedding Association Test (WEAT) metric [15], measures the associations between
two sets of target words representing protected attributes of social groups like gender (e.g., male
and female names) with two sets of words that are considered neutral attributes (e.g., love, hate,
beautiful, ugly). The hypothesis is that there is no difference between the two sets of target words
in terms of their similarity to the two sets of neutral attributes. WEAT is the normalized measure
that denotes how separated the two distributions are. Formally, given the two sets of protected
attribute words (Py, P2) of equal size and the two sets of neutral attribute words (N7, N3), the
test statistic is :

s(P1, Py, N1, Ny) = Y s(wy, Ni, Na) = > s(wp, N1, Ny) (1)
wy € Py wp € P
where
s(wp, N1, No) = mean,, e N, coS(Wy, Wy,) — Mean,, e N, cos(Wy, wy,) (2)

where cos(wp, w;,) denotes the cosine similarity of the embedding vectors of the protected word
wp and the neutral word w,. Finally, the WEAT metric measures the effect size



Meany, e p, 5(Wp, N1, No) — mean,,cp,s(wp, N1, Na)

WEAT(Py, Py, Ny, Ny) = (3)

Stdwpeplngs(wpa Nl) NZ)

Sentence Embedding Metrics. Most of these metrics are adaptations of the WEAT metric
for sentences, where the embeddings are not static but learned in the context of sentences. For
example, the Sentence Encoder Association Test (SEAT) [39] uses the same equation as in Eq. 3
over template sentences, where the empty slots in the templates are replaced with protected and
neutral attribute words. SP;, SPy, SN7, SNs denote the two pairs of sets of protected and neutral
sentences. The embeddings are computed using the classification [CLS] token.

means,csp, 5(sp, SN1, SN2) — mean csp,s(sp, SN1, SN2)

SEAT(SPI’ SPQ’ SNh SNZ) - StdspESP1USP2S(Spa SN17 SNZ)

(4)

The Contextualized Embedding Association Test (CEAT) [32] proposes an approach that
considers all the different contexts in which words can appear to compute their effect size, by
generating sentences with combinations of the protected and neutral attribute words. However,
since the number of combinations can be rather large and depends on the size of the word sets, the
model proposes to randomly sample subsets of the embeddings and calculate a distribution of effect
sizes. Formally, the combined effect size is the weighted mean of the distribution of random effects,
as shown in the following formulae:

Eij\il w; x* WEAT (Pyi, P, N1j, Noj)
N (5)
Zi:l Uj

where wu; is derived from the variance of the random-effects model.

CEAT(Py, Py, N1,Ns) =

The Sentence Bias Score [24] was used for male and female gender bias, but can be expanded to
any other (even non-binary) protected attributes. It uses the cosine similarity between neutral word
embeddings and the protected attribute direction vector (in this case gender) to estimate word-level
bias. Then it sums up the bias of all the words in the sentence, normalizing it with respect to the
length of the sentence and to the contextualized semantic importance of each word. The bias score
keeps the estimations of gender bias towards the male and female directions separated. Formally,

BiasScore(s) = Z cos(wW, p) * I, (6)
weEs,w¢ P

where p' is the protected attributes direction, previously identified in the vector space from
multiple words per attribute (e.g., words relating to male or words relating to female gender),
P is a list of protected attribute words in the same language as the encoder, I, is the semantic
importance of each word in the sentence according to the encoder, and w is the embedding of a
word of the input sentence.

Discussion. Regarding the embedding-based metrics, there are various references in the bibliogra-
phy criticizing their effectiveness and consistency, pointing that it is preferable to measure bias
on the corresponding tasks [21]. For example, [14] mentions that there might be inconsistencies
between bias in representations and bias in the task at hand. Additionally, the effectiveness of
the metrics depends on various choices like which are the templates, the seed words capturing the
protected attributes, and the type of used embeddings (static or contextualized) [21].

4.2. Probability-based Metrics

These metrics are based on the predicted probabilities that are associated by the LLMs for the
protected attribute words or neutral attribute words, based on specific prompts and templates
given as input.



Masked Token Methods

These metrics are used in masked language models (MLMs) like BERT [22] by masking a word
in a sentence. The MLM then predicts the missing word. For example, the Discovery of Correlations
(DisCo) [58] approach uses templates (e.g., "[P] is a [MASK]"), where the [P] slot is filled with
a protected attribute word and [MASK] is predicted by the model. By taking the top-3 predicted
words, the metric computes the differences in the predicted words for the different social groups
represented by the protected attribute words. A predicted word is supplied preferentially for one
gender over another when the x? metric rejects a null hypothesis of equal prediction rate.

Log-Probability Bias Score (LPBS) [38] tries to normalize the predicted probability of a protected
attribute word using the prior bias of the model towards predicting this specific protected attribute
word. Again, the metric uses templates for MLMs of the form " [MASK] is a nurse", where nurse
is a neutral attribute word and [MASK] is used for computing the probability p,, of a sentence
where the [MASK] is replaced with a protected attribute word like he. The prior probability pyrior
is computed by using the template " [MASK] is a [MASK]" that removes the neutral attribute and
by predicting the probability of the sentence "he is a [MASK]". Formally, for binary social groups
protected attributes of a sentence S:

Puw,

— log Puye (7)

Ppriori Pprior2

LPBS(S) =log

A variation of the LBPS for non-binary protected attributes is the Categorical Bias Score (CBS),
which is described in [2].

Pseudo-Log-Likelihood Metrics

These metrics are based on the Pseudo-Log Likelihood (PLL) [48, 56] metric used in MLMs,
that measures the probability of generating a token given the other words in a sentence. Similarly
with previous approaches, a word is masked out, replaced by the [MASK] special token. Formally, if
© denotes the model’s parameters, and S a sentence

PLL(S) = > log P(w|S\u; ©) (8)
weES

The Context Association Test (CAT) Score proposed in [40] for the StereoSet dataset. Each
sentence is paired with a stereotype, antistereotype and meaningless sentences. The metric computes
the probability of protected attribute related tokens conditioned on neutral tokens, by masking and
predicting the protected attribute tokens. Formally, if IV the set of neutral words in a sentence S
and P the protected attribute words,

CAT(S) = Y log P(wy| P\, N5 O) 9)
wyp€P

A variation of the CPS is the CrowS-Pairs Score proposed in [41] for the CrowS-Pairs datasets.
Given a pair of sentences, one stereotyping and one that is not, the metric computes the probability
of neutral tokens conditioned on protected attribute related tokens, by masking and predicting the
neutral tokens. This is the opposite of CAT addressing that there might be an imbalance in the
training data for the protected attribute tokens. The metric proposes to control this frequency
imbalance to condition on the protected tokens when estimating the likelihoods of the neutral
tokens. Formally, if IV the set of neutral words in a sentence S and P the pair of protected attribute
words,

CPS(S)= > log P(wy|Ny,, P;0) (10)
wn, €N

The All Unmasked Likelihood (AUL) [35] metric uses an unmasked sentence and the model
predicts all the tokens in the sentence. Masking tokens can change the context of the input.



Additionally, removing one token at a time does not guarantee that the rest of the words are not
biased. In AUL, the model has all the information to make the prediction of each token, improving
the accuracy of the bias evaluation. Formally,

AUL(S) = Z log P(w|S; ©) (11)

weSs

5]

A variation is the AUL with Attention Weights (AULA) [35], that augments the AUL metric
with the importance of each token based on its attention weight. Formally, considering that «;
denotes the attention weight of the token w; the metric is computed by

AULA(S) = o > ailogP(w;]S; ©) (12)

w; €S

\SI

Given any of the above score functions denoted as f, and N pairs of stereotypical Ss and
antistereotypical S, sentences, the bias score of an LLM model M is given by the following function:

I(f(Ss Sa
pias(a) — 10152 > 1(50) "
N
, where I is the indicator function, which returns 1 if its argument is True and 0 otherwise. An
ideal model should achieve a score of 0.5 when considering all sentences.

Finally, the Language Model Bias (LMB) [7] was proposed for the RedditBias dataset. The
metric measures how much likelier is for the LLM to generate a stereotypically biased phrase
compared to a corresponding inversely biased phrase, where terms of a protected group are replaced
by terms of the inverse group over all the corresponding combinations. The metric is based on the
mean perplexity differences between biased expressions and their counterparts. Outlier pairs with
very high perplexity are removed to reduce noise, depending on the mean perplexity of the sample
and the standard deviation. A two tailed Student t-test indicates the presence of bias.

Discussion. The effectiveness of probability-based metrics have been questioned on the downstream
tasks by [21]. The fact that most of these metrics depend on masked templates with low diversity
and limited target words can hinder their generalization and reliability. Finally, all of these metrics
assume binary social groups which is not always the case.

4.3. Generated text-based Metrics

When the interaction with an LLM is limited to just the generated text and there is no access
to the probabilities and embeddings, the only way to evaluate a model for bias is by evaluating
its generated text. Usually, the models are given prompts that can contain biases and can lead to
generated text that also contains biases. Such metrics include the comparison of the distributions
of bias-associated tokens, by using auxiliary classification models that classify the generated text
to the bias classes of interest, or by using lexicons that contain a set of biased words, potentially
associated with a bias score, and compute the bias score of the generated text.

Distribution Metrics

These metrics compare the distributions of tokens in the LLM generated text for the various
social groups. In the following, we discuss the most prominent ones.

Social Group Substitutions (SGS) [16] is based on the assumption that the distributions of the
various tokens should be identical for various groups. The metric uses an invariance metric ¢ like
exact match [46], that is 1 when all characters of two texts match and 0 in any other case. Formally,

SGS(Y) = $(Y;, ) (14)

, Where Y; and }7] are the two LLM generated texts based on input that depends on different
values of a protected attribute (e.g., gender).



Co-Occurence Bias Score [11] restricts the focus only to words that co-occur with a set of words
related to specific values of a protected attribute. Specifically, given a token w and two set of
protected attribute words P; and P the bias score for each word in a corpus of generated texts is

computed as:

. P(w|Py)
Co — occurenceBiasScore(w) = log ————= 15

The score is zero for all words w that co-occur equally for each set of protected attribute words.

Demographic Representation [10] counts how many times a token w associated with a specific
group appears in a generated text Y. Formally, for each protected group G; associated with a set
of protected attribute words P;, and a set of generated texts Y the count is:

DR@G) = Y 3 Clw,¥) (16)

wpEP; Yy

, where C(w,Y) is the count of word w in the generated text Y. The vector of counts of all
groups, normalized to a probability distribution, can then be compared to a reference distribution
probability like the uniform distribution, using metrics like KLi divergence, and Wasserstein distance,
etc.

Stereotypical Associations [10] is similar to Demographic Representation but measures bias
associated with a specific term w. Specifically,

ST(w)= Y > Clwy, V)I(C(w,Y) > 0) (17)

wp€P; yey

I, the indicator function returns 1 when its arguments are true. The vectors of stereotypical
associations of groups are normalized and compared to a reference distribution probability.

Classifier Metrics

The classifier-based metrics use an external classifier to identify any kind of bias in the generated
output of LLMs for prompts that are similar but associated with different social groups. Most of
the reported metrics have been used in the bibliography for toxicity, but they can be generalized for
other bias classification tasks. The Expected Maximum Toxicity (EMT) [30] report the worst-case
generations over the generated texts, the Toxicity Probability (TP) [30] which reports the probability
of generating at least one toxic text with a toxicity score larger than a threshold (e.g. 0.5), and
the Toxic Fraction (TF) [10] which is the fraction of generated texts that are toxic. The above
metrics can be adapted to any kind of bias classifier. Formally, considering the classifier function
c:Y —[0,1]:

N —

EMT(Y) = mazy gc(Y) (18)

TP(Y) =P(>_ I(c(Y) > 0.5) > 1) (19)
Yev

TF(Y) = Egq[l(c(Y) > 0.5)] (20)

Score Parity [49] measures how consistently a classifier for a specific protected attribute classifies
the LLM generated language. Specifically, given the scoring function ¢ : YaP — [0, 1], where P a
protected attribute,

ScoreParity(Y) = [Ey g[c(Y,i)|P = i] — Eyogle(Y;, )P = j]| (21)

Wasserstein-1 distance between the classified distributions has also been used as in the Counter-
factual Sentiment Bias [33].



Lexicon Metrics

The lexicon-base metrics use a precompiled set of biased words or assign a bias score to them.
These words are then taken into consideration in a word-level analysis of the generated output.
For example, HONEST [42] measures how many top-k completions in templates prompts contain
biased words that are in the precompiled lexicon Lex. Formally,

_ ZYGY ZykEYk Tpee (g)

HONEST(Y) Tk
*

(22)

The Psycholinguistic Norms [23] and the Gender Polarity [23] use a lexicon with words associated
with numeric ratings that measure their affective meaning (e.g. fear) or bias score correspondingly.
The metrics compute the weighted average of the psycholinguistic and bias scores of all words in
the texts. Formally, for gender bias,

. O e o sign(bias((§)) * bias(f)?
GenderPolarity(Y) = 2vet 2pen, 5191 ((y))A ©) (23)
vt Lypevy [bias(d)]

Discussion.

An important issue with metrics that measure the generated text as discussed in [3] is the
various model parameters such as the decoding parameters or the size of the generated text. So
it is important to report the results along with the various parameters. Word associations with
protected attributes might not be a reliable proxy for the task at hand and lexicon-based metrics
might not be able to capture biases that emerge in sentences and phrases [14]. Finally, classifiers
impose their own biases, due to the datasets on which they have been trained and might not be
able to capture the dynamicity of the evolution of bias [45].

5. Clustering

Clustering algorithms are unsupervised methods, which aim to separate the data instances into
clusters, such that objects in the same cluster are more similar, or close, to each other, dissimilar, or
far, from the rest of the objects and their clusters. Clustering is an important data mining procedure,
and it is often used as a data processing step for summarization, dimensionality reduction, data
analysis, etc. It is thus important to ensure a fair, balanced, and transparent environment in
clustering techniques and clustering outputs. Similarly to the classification case, clustering fairness
definitions can be divided into group fairness and individual fairness. We now consider the different
metrics for these two approaches. Our exposition follows the survey in [18] that organize and
categorize the field.

For the following, we assume that we have as input a set of points X = z1, x, .., x,,. The output
of the clustering is a partition of the points C' = C4,Cs,..Cy, C; C X, C; N C; = 0 into k clusters.
The value of k may be an input to the clustering algorithm, or it may be a value decided by the
algorithm.

5.1. Clustering Group Fairness

Group fairness assumes that the input points X = z1, 29, .., z,, are partitioned into m groups
(colors) G = g1,92,--9m, 9i € X, gi N g; = 0. These groups are defined by protected attributes
associated with the input points. For example, if the points represent individuals these may be
attributes like gender, race, religion, etc. For simplicity, for the following we will assume that we
have two groups (colors) g1 and go. For a subset of points Y C X, we use Yy,,Y,, to denote the set
of points in Y that are colored g; or go. Group fairness requires that all groups should be treated

equally in the output clustering. We now present some clustering group fairness metrics.

Balance: The notion of balance, first defined in [20] requires that the clustering produces clusters
where the groups are equally or proportionally represented. For a non-empty subset of points

10



0 #Y C X, we define the balance of Y as:

Yol Yol
balance(Y') = mln{ L= e0,1] (24)
|}/!12 | |}/!h |

A perfectly balanced subset would have an equal number of points from the groups g; and go,
resulting in a balance value of 1.

Given the definition of a balance of a set of points, we define the balance of a clustering
C ={C,...,Cx} as the minimum balance value over all clusters of C. That is,

balance(C') = min balance(C;)

Cc;eC
The definition of balanced was extended for the case of more than two groups in [47].

Bounded Representation: The Bounded Representation fairness [9] considers the representation
ratio of each color (group) in the clusters, and bounds it by the values a(g;),b(g;), which are
parameters to the definition, for each color g;.

Formally, for a cluster C; € C and the ratio of appearances of the color g; € g being freq(C;, g:),
we define:
a(g:) < freq(Ci, gi) < b(gi) (25)

This equation requires that every cluster has at least a(g;) fraction of nodes with color g;, and at
most b(g;) fraction of nodes of the same color g;. There are also fairness definitions that consider
an upper bound only [1].

Fair Representation of centers: Another definition of fairness considers specifically the k-Centers
algorithm and defines the fairness with respect to the center choice [37]. The intuition of this
definition is to have proportional representation of different groups (colors) in the center selection.
For every color in g, there must be at least k; centers of this color, thus, avoiding over-representation
or under-representation of any group in the set of selected centers.

Proportionality: Proportionality fairness [17] is defined for center-based clustering. The definition
of proportionality states that a clustering C' = {C1,...,Cy} with k clusters and X the set of all
points, is fair, if for every subset %I of points, there does not exists a center that is closer to all its
members than their center.

Fairness with outliers: There are also fairness definitions for clustering with outliers [6]. The
output of the algorithm in this case is set of outlier points, and a clustering of the remaining points,
after outliers have been removed. Fairness is studied for the k-center problem. The main idea is
that the outliers should not belong to a single group, thus depleting the points of the group that
are being clustered. Otherwise, the algorithm is considered unfair.

To define fairness, for each group g; of the g groups, we define a parameter m;. Let A denote
the set of points to be clustered, after the removal of the outliers. We require that |A N g;| > m; for
all groups g;. Different m; values can capture a plethora of fairness scenarios.

Social Fairness Cost: Social Fairness Cost [31] defines a measure for fairness for the popular
k-means algorithm. Recall that the k-means algorithm, with input X produces a clustering
C ={Cy,...,Ck}, with centers {cy,...,c;} that minimizes the cost

_ : 12
O(C,X) = min ||z — ci|

i

rzeX

The fair version of k-means objective looks at the cost for the different groups in the data. That is,
0(C, X,,)
d(C, X) = — g
(€, X) = max =5
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Since social fairness refers to a cost, it needs to be minimized (unlike balance, which might be
maximized). Therefore, lower social fairness cost indicates fairer clustering.

Maximum Fairness Cost: Another notion of fairness is the Maximum Fairness Cost(MFC) [19].
It assumes a parameter m; for each group g; € G, which is the ideal fraction of points from group ¢
in each cluster. Let Pc, 4, be the actual fraction of points from group g; in cluster C; € C. Then
the Maximum Fairness Cost M F'C' is defined as

MFC = max > |Pc, g —mil (26)
9:€[G]

This metric has also been applied to Hierarchical clustering, where we evaluate the metric at each
level of the hierarchy.

5.2. Clustering Individual Fairness

Individual fairness is based on the principle “treat similar individuals similarly” [26], or that
each individual should receive fair treatment without disrespecting the needs of others. For the
following we assume a distance metric 1, ., € [0, 1] between the points in the input data X that
captures their similarity. This value can be different from the distance metric used for clustering
the data.

Probabilistic Pairwise Fairness: In [13] they assume a randomized strategy for assigning points
to clusters. Let o(z;) : X — C denote the assignment of points to clusters, sampled from a
distribution D over all possible assignments. Their notion of fairness requires that the assignment
separates the two points x;, z; with probability at most 9., .. Specifically,

Pr @) # p(a)] < Yo, 1)

Distributional Individual Fairness: The definition in [5] assumes again a probabilistic assignment
over the clusters in C. For a point z; let ¢,, denote the probability distribution of the assignment
of x; over the clusters in C. Given the metric D that measures the statistical proximity of two
distributions, fairness requires that for each z; € X:

D(ba;s ¢z;) < Yy (28)

a-Equitable k-Center: This fairness definition [16] is defined for the k-center objective but can
also be applied to any center-based clustering. For every point z; € X we assume a set of other
points S, C X, which are close (similar) to ;. Abusing the notation, let C{cy,ca,...,cr} denote
the k centers produced by the clustering algorithm, and let ¢ : X — C denote the assignment of
points to cluster centers. Given a value o > 1, and a distance function d the fairness definition
requires that Va; € X,Vx; € 5;

d(wi, p(x:)) < axd(z;, o(z;)) (29)
The smaller the « is, the more fair the achieved separation.
A center in my neighborhood: This definition [34] deviates from the principle “treat similar
individuals similarly”. The definition assumes cluster centers. Similar to the previous definition, let
C{c1,c,...,cr}t denote the k centers produced by the clustering algorithm, and let ¢ : X — C

denote the assignment of points to cluster centers. For each point z; we assume a parameter r,,,
which is the acceptable radius for point x;. The fairness definition requires that for each point x;:

12



Kleindessner et al individual fairness: This definition [36] requires that the distance of a point
from the cluster is smaller or equal than the distance of a point from another cluster. Specifically:
VC; € C,\Vx € C;:

1 1
T 1 d(xvxl) S =7+ d(x,x') (31)
PRSP

6. Network Analysis

In our modern society, networks are all around us and influence our daily lives: social networks,
transportation networks, supply chain networks, power grid networks, etc. In the era of Big Data,
these networks produce massive amounts of data which we desire to analyse in a regular basis in
order to make informed decisions regarding their evolution. Given the increasing interest in network
analysis expressed by the numerous diverse application domains, a number of algorithms have been
proposed over the years to perform the various network analysis tasks. However, most of these
algorithms do not consider fairness. As the end-user applications may be life-changing, such as
loan approval, or mission-critical, such as disaster response, ensuring that the algorithms used in
these applications treat all groups and individuals in a fair manner is paramount.

Ensuring fairness in the context of network data is challenging, because network data is not
independent and identically distributed (i.i.d.), so fairness notions established for i.i.d. data do not
directly apply to network data. Moreover, each network analysis task introduces its own unique
sources of bias, driving researchers in the field to propose specialized metrics of said bias. In this
report, we focus on the fairness of two specific network tasks: Diffusion maximization and PageRank.
For further reading, we point to the survey by Dong et al. [25].

In what follows, we are given a network in the form of a (directed) graph G = (V, E). We
assume that the nodes are associated with a sensitive attribute, e.g. gender or race for the case of a
social network, that has P distinct values which we identify with the integers of [P]. Let {V;}ic(p)
be the partition of V into P groups with respect to the sensitive attribute where V; denotes the
group of nodes for which the value of this attribute is . For most of the discussion below, we
assume a binary sensitive attribute.

6.1. Diffusion Maximization Fairness

Here, we consider a discrete-time random process for diffusing information in the network with
the following properties: A subset S of V', which is called the seed set, is being selected to initially
possess the information. A node that possesses the information is said to be active, otherwise it
is said to be inactive. Inactive nodes can be activated, but active nodes cannot be deactivated.
Nodes can only be activated by their neighbors as a result of passing information through the edges
of the network. For example, in the independent cascade model, in every round of the random
process, every active node activates each one of its inactive neighbors with independent probability
p. This implies that if an inactive node has d active neighbors, then it is activated with probability
1 — (1 —p)?. The random process terminates after a round in which no new nodes were activated.
In the diffusion mazimization problem, we are given the graph GG and a budget K and we are asked
to find a seed set S such that |S| < K and the expected number of active nodes of V' after the
random process termination', which is called the spread, is maximized.

For subsets S,T of V' and a subgraph H of G, we let Uy 1(S) denote the spread among the
nodes of T' through the edges of H with seed set S and we set Ny r(S) = U r(S)/|T| € [0,1]
which is the ratio of the nodes of T' that are contained in the expected set of active nodes for the
same instance. We also set S; = SNV, for every i € [P].

6.1.1. Group Fairness

Maximin Fairness Tsang et al. [52] propose two notions of group fairness in the composition of
the expected set of active nodes. Their first notion, maximin fairness, is based on the Rawlsian

L As all expectancies in this section are considered after the random process termination, we will hereafter omit
this clarification for brevity.
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Theory of Justice principle that inequalities are to be arranged to the greatest benefit of the least
advantaged. Maximin fairness requires that

Nmin S) = min S/ 32
av(S) gomax av(S), (32)

min

where NG (S) = m[ilr}] Ng,v,(S) is the Mazimin Fairness metric.
: ic

Group Rationality The second notion of Tsang et al. [52], group rationality, is based on the
authors’ view that no group should prefer to be given its fair set of seeds and diffuse information
only in its own subnetwork instead of contributing in the diffusion of information in the whole
network. For every i € [P], we let K; denote the share of the budget that would be fairly allocated
to V; according to demographic parity, that is, we set K; = K|V;|/|V]. Group rationality requires
that the following constraints are satisfied.
, ) /

Vi € [P] : UG7Vi (S) > Sgg‘/%aé)iglﬁ UG[Vi]A,Vi (SZ) (33)
For a group for which the respective constraint is satisfied, internal diffusion of information is not
preferable under any choice of seed set where the group is being allocated its fair share of the budget.
The Diversity Constraints metric is the ratio of the P constraints of Eq. (33) that is violated.

Demographic Parity Stoica et al. [51] consider group fairness in the composition of the seed set
as well as in the composition of the expected set of active nodes. For the seed set, their definition
of group fairness requires that the following equalities hold.

T I 71

Vi, j e [P]: AR
i J

It is not difficult to see that this is equivalent to requiring that the composition of the seed set is
according to demographic parity, that is:

NETRA

S| VI
To measure bias in the composition of the seed set, the authors implicitly consider the metric
1S:| Vil
ISl V]

Vi € [P]

)

ax

i€[P]

which we call the Maxzimum Demographic Disparity in Seeding metric. For the expected set of
active nodes, their definition of group fairness requires that the following equalities hold.

Vi, j € [P]: Ngv,(S) = Na,v, (5)

As before, it is not difficult to see that this is equivalent to requiring that the composition of the
expected set of active nodes is according to demographic parity, that is:
Uswi(S) _ Vi

Ucv(S) |V]

Vi € [P]

To measure bias in the composition of the expected set of active nodes, the authors implicitly
consider the metric

Ug,v,(S) Vil
Usv(S) V|

which we call the Maximum Demographic Disparity in Diffusion metric.

)

1€[P)

Ali et al. [4] introduce another metric for measuring bias in the composition of the expected
set of active nodes. This metric is proposed based on the legal concept of disparate impact
which refers to policies that result in a substantially different treatment of members of a group
despite appearing neutral at face value. The Mazimum Disparity in Normalized Utilities metric is
max, [NG.v, (S) = Ne,v; ()]

i,jE[P
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6.1.2. Individual Fairness

Maximin Fairness Fish et al. [28] propose mazimin fairness as a notion of individual fairness in
the composition of the expected set of active nodes. Maximin fairness requires that Eq. (32) is

min

satisfied in this context as well, but the Mazimin Fairness metric is NGy (S) = mi‘r/l Ne (w3 (5).
: e ,

6.2. PageRank Fairness

A important network analysis task is to rank the nodes of the network with respect to their
importance. Google’s celebrated PagePank algorithm [12] accomplishes this task by performing a
special kind of random process on the network graph, which is called a random walk with restarts.
A (1°%-order) random walk on the graph G is a (1%'-order) Markov chain on V with transition
probability matrix P such that P,, # 0 if and only if uv € E. As P is not row-stochastic if a node
of G has no outgoing edges, we treat such nodes differently: for every node v € V' with no outgoing
edges, we define P,,, = 1/|V| for all v € V, that is, we define the corresponding row to be the
transposed uniform probability vector. A random walk with restarts on G is a generalization of the
previous notion where we are also allowed to restart the random walk with probability v from a
node chosen according to a probability vector v — this action is also referred to as a jump. An
algorithm that takes a graph as input and performs a random walk with restarts on the graph is
called a PageRank algorithm. Google’s original PagePank algorithm performs the random walk
with restarts with

¢ P being the row-normalized adjacency matrix of the input graph rectified as discussed above,
e v=0.15 and
e Vv being the uniform probability vector.

The stationary probability vector p of a random walk with restarts on G with transition
probability matrix P, restart probability v and jump probability vector v satisfies the equation

p ' =(1-9)p'P+v" (34)

and thus p can be computed by solving Eq. (34) analytically. It is also known that the probability
vector sequence (p¢)ien Where ptT_s_1 = (1 —7)p!P +yvT for all t € N converges to the vector p
independently of the choice of initial probability vector pg.

6.2.1. Group Fairness

Tsioutsiouliklis et al. [53] initiate the study of bias in PageRank by considering the case of a
binary sensitive attribute of which one value identifies a protected group. The authors propose the
following two definitions of PageRank fairness, where ¢ € (0,1) is a parameter.

¢-fairness A PageRank algorithm is ¢-fair if p allocates probability mass ¢ to the nodes of the
protected group.

Local ¢-fairness A PageRank algorithm is locally ¢-fair if every transposed row of P allocates
probability mass ¢ to the nodes of the protected group. This means that every node of G
distributes its probability mass in a ¢-fair manner in every iteration.

The authors also prove that if a RageRank algorithm is locally ¢-fair, then it is also ¢-fair.

Tsioutsiouliklis et al. [54] use the probability mass that p allocates to the nodes of the protected
group to measure bias in p and they refer to it as the PageRank Ratio.
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7. Conclusion

In this report we presented a comprehensive survey of the different metrics for algorithmic
bias and fairness. We presented the general approaches for defining of fairness, namely, Individual
Fairness, Group Fairness, and Casual Fairness. Then, we presented metrics for specific Machine
Learning problems, specifically, Classification, Large Language Models, Clustering, and Network
Analysis.
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